ACKNOWLEDGEMENTS

Above all, I have to thank, Allah who creates and gives us the
power to work and the ability to do this work,

I would like to express my sincere appreciation and gratitude to the
chairman of the Department of Mathematics Prof. Dr. Riyadh .
Hammed for his continuous help.

Also, I would [iRe to thank the staff members of the Department of
Mathematics and to the faculty of College of Education of Al
Mustansiriya University for all help and advice they Rindly gave to me
during my M.Sc. stud)y.

Finally, thanks are due to my family and friends who give me the

help, support, encouragement and patience.

Dalia Raad Abed
April; 2015 &5

LIST OF SYMBOLS

| Notation | Meaning |




MFNDE | Fractional multi-order nonlinear differential equation

4 The left Riemann-Liounville fractional integral .

LIg The right Riemann-Liounville fractional integral .

D¢ The left Riemann-Liounville fractional derivative .

D¢ The right Riemann-Liounville fractional derivative .

‘D¢ The left Caputo fractional integral .

DY The right Caputo fractional integral .

T, (x) Chebyshev polynomial of first kind .

V,,(x) Chebyshev polynomial of third kind .

W, (x) Chebyshev polynomial of fourth kind .

T, (x) Shifted Chebyshev polynomial of first kind .

Tip (x) Shifted pseudo-spectral Chebyshev polynomial of first kind .

V(%) Shifted Chebyshev polynomial of third kind .

W, (x) Shifted Chebyshev polynomial of fourth kind .

w;(x) Weight function for Chebyshev polynomial, i=1,2,3,4 .

w; (x) Weight function for shifted Chebyshev polynomial, i=1,2,3,4

w? (x) Weight function for shifted pseudo-spectral Chebyshev
polynomial of first kind .

A% Operational matrix of fractional derivative of order o0 .

Wop(t) Wavelet functions .

wi (t) |Shifted Chebyshev wavelets ,i=1,2,3,4 .

w;, (2%t | Weight function for shifted Chebyshev wavelets , i=1,2,3,4 .

T,{‘rgc) Shifted Chebyshev polynomial first kind of order o .

V& (x) Shifted Chebyshev polynomial third kind of order o .

W, (x) Shifted Chebyshev polynomial fourth kind of order a. .

A* Fractional matrix of order different than order of the

equation.




A® Fractional matrix of order equal the order of equation.

ABSTRACT



This thesis, constancies the numerical solutions of multi-fractional
order nonlinear differential problems with initial (mixed boundary)
conditions which have been considered in details. The fractional
operational matrices of fractional derivative f > 0 have been studied and
developed on types of shifted chebyshev polynomials and shifted
chebyshev wavelets as well as fractional order chebyshev polynomials
with order @ > 0 and presented the relation between these types, they are
given as an operational matrices of fractional derivatives as well as, we
have given two types of fractional operational matrices for fractional
derivatives depended on 8 > Ovalues. Also the coupled fractional orders
such that one of them is originally and others are axillary order such that
one a fractional operational matrix to find the best approximate solution
of multi-fractional order nonlinear differential problems with mixed
boundary value. The rule of the order of fractional polynomial is
presented as important parameter for given exact solution and is
illustrated in some examples.
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INTRODUCTION




Many phenomena in engineering physics, chemistry, and other sciences
can be described successfully by models that use mathematical tools of
fractional calculus, i.e. the theory of derivatives and integrals of non-
integer order [27,45,46]. For example, they have been successfully used
in modeling frequency dependent damping behavior of many viscoelastic
materials. There are numerous research which demonstrate the
applications of fractional derivatives in the areas of electrochemical
processes, dielectric polarization, colored noise, and chaos. [19]

The numerical solution of differential equations of integer order has
been a hot topic in numerical and computational mathematics for a long
time. The solution of fractional differential equations has been recently
studied by numerous authors. However, the state of the art is fearless
advanced for general fractional order differential equations. Moreover, to
the best of the authors knowledge, very few algorithms for the numerical
solution of multi-order fractional differential equations have been
suggested [10,35,47], particularly algorithms for analytical solutions and
approximate solutions of nonlinear multi-order fractional differential
equations. [19]

Fractional-order differential equations, as generalizations of classical
integer-order differential equations, are increasingly used to model some
problems in fluid, mechanics, viscoelasticity, biology, physics,
engineering, and other applications. Fractional derivatives provide an
excellent instrument for the description of memory and hereditary
properties of various materials and processes [6,13,30,37,38,39]. The
solutions of fractional order differential equations are much involved,
because in general, there exists no method that yields an exact solution
for fractional order differential equations, and only approximate solutions

can be derived using linearization or perturbation methods. Several



methods have been suggested to solve fractional differential equations
[see 26]. [16]

For multi-order fractional differential equation, an operational matrix of
fractional integration in complex way is studied in [19],[20],[44]. Adams
method is used to solve multi-order fractional differential equations and
their numerical in [8], Euler's method, product trapeziodal quadrature
formula, product considered in [47], V.Gejji and H.Jafari are studied
Adomian decomposition method in(2007), the variational iteration
method in [48],[50], the generalized Laguerre polynomials is studied in
[21], Legendre pseudo-spectral method in [19], and Chebyshev wavelets
with integration fractional operational matrices are considered in [26].

The Chebyshev polynomials are one of the most useful polynomials
which are suitable in numerical analysis including polynomial
approximation, integral and differential equations and spectral methods
for partial differential equations [4,5,12,34] .( see[33])

In recent years, wavelets have received considerable attention by
researchers in different fields of science and engineering. One advantage
of wavelet analysis is the ability to perform local analysis [31]. Wavelet
analysis is able to reveal signal aspects that other analysis methods miss,
such as trends, breakdown point and discontinuities. In comparison with
other orthogonal function, multiresolution analysis aspect of wavelets
permits the accurate representation of a variety of functions and
operators. In other words, we can change M and K simultaneously to get
more accurate solution. Another benefit of wavelet method for solving
equations is that after discreting the coefficients matrix of algebraic
equations is sparse. So the use of wavelet methods for solving equations
is computationally efficient. In addition, the solution is convergent. The

operational matrix of fractional order integration for Chebyshev wavelet,



Legendre wavelet, and haar wavelet has been introduced in [15,26,31] to
solve the differential equations of fractional order, [18].

However, few papers have reported applications of wavelets in solving
fractional differential equations [19,25,28,41,49]. In view of successful
application of wavelet operational matrices in numerical solution of
integral and differential equations [22,40,42], together with the
characteristics of wavelet functions, we believe that they should be
applicable in solving multi-order fractional differential equations [16].

One of the attractive concepts in the initial and boundary value
problems is differentiation and integration of fractional order
(K.Diethelm),(Fox),(K.B.Oldham). Many researchers extend classical
methods in studies of differential and integral equations of integer order
to fractional type of these problems (X.Li),(A.Saaadatmandi and others).
One of the wide classes of researches focuses on constructing the
operational matrix of derivative in some spectral methods. Recently, a lot
of attention has been devoted to construct operational matrix of fractional
derivative [ 4,23,43].[33]

In this work , we will set a new modified operational matrices of shifted
Chebyshev polynomial and Chebshev wavelets, some of them is new
formula appeared in [29], to solving multi-fractional order of nonlinear
differential equations, also we set a new modified fractional operational
matrices for using fractional Chebyshev polynomials of shifted (first,
third, fourth) kinds for fractional order of polynomial different from or
equal to the fractional order of multi-fractional order nonlinear
differential equations with mixed boundary conditions.

The new relations between the Chebyshev wavelets kinds also are given
to complete all the useful of operational matrices.

The obtained solutions of above methods, show that the operational

matrices and fractional operational matrices are very convenient and
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efficient and only few calculations to give high accurate and may lead to
exact solutions.

This thesis consists of three chapters.

In chapter one, we study some of special functions including gamma
and beta function. The definitions are related to fractional concepts. In
this chapter, the kinds of Chebyshev polynomials with their relations and
some kinds of chebyshev wavelets, their function approximation and
some illustrative examples.

In chapter two, we presented the definitions related to shifted
Chebyshev wavelets kinds and give the basic theorems of operational
matrices of Chebyshev polynomials kinds and their related in fractional
derivative concepts. Also we illustrative some examples for using
operational matrices of new formulations for solving multi-order
fractional nonlinear differential equations.

Finally, chapter three presents the solution of multi-order fractional
nonlinear differential equations with mixed boundary conditions using
fractional operational matrices with equal or different type of order of the
equation and given the examples to illustrative the methods. Also
different fractional operational matrices, one as originally and second as
axillary orders are explained with some examples.

The value of x observed in details to explain the activity of approximation
of solution with mixed boundary conditions.

It is important to notice that, the calculations are written by using the
mathematical software MATHCAD 14.0 .

PRELIMINARIES
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1.1 Introduction:

In this chapter, we introduce some definitions of some special known
functions and fractional order derivative and their properties. Also the
constrictions of Chebyshev polynomials formulation have been given and
studied the shifted pseudo-spectral Chabyshev polynomial of first kind
with interval[O,L] .

The constriction wavelets chebyshev formulations also have been given
with general details of orthogonality which supported by some alterative.
This chapter consists of four sections. In section (1.2), some of special
functions are introduced, as well as, some of their important properties. In
section (1.3), some types of fractional (derivative and integral) and some
important properties. In section (1.4), Chebyshev polynomials of fourth
kinds. Finally , in section (1.5), wavelet functions have been presented.
Illustrative examples have been given to support all the concepts.

1.2 Some of Special functions:

The basic theory of the special functions which are used later on are
given and explained in details.
1.2.1 Gamma Functions,[38]:

The basic functions of the fractional calculus is Euler's gamma function

M(z) = [ e tt* 'dt (1.1)
which generalizes the factorial n! and allows n to take also non-integer
and even complex values.

One of the basic properties of the gamma function is that it satisfies the
following functional equation:

1. The gamma function is continuous for all real positive.[24]

2. I'(z+ 1) = zI'(2). [38]
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n!n?

3.T(z) = lim where Re(z) > 0,z # 0,—1, ... ,[38].

n—-oo Z(Z+1)---(Z+n)’
4.T(5) = v . [24]
en)\Vr

221 |

5.T(~+n) = neN. [24]

1 _ (-H"nlVm
6. F(; —n) = e €N . [37]

7.Tm+1)=nln)=n-(n—1!'=n! for n=0,12,- ,[38].

8.I'(—n) = ";(n—fg") . [16]

0.1(m) = L T Tn+ 5. 137

Example (1.2.1),[24]:
To evaluate the following function by using gamma function we need to

do the following transformation

f(x) = foooe‘xz dx = \/Z—E

-1

1
Letx? =t thus x = t2 yeilds dx = —t2 dt
fooe‘xzdxzifooe‘t-t%dt
0 2 70

also,Let z—1 = _71 ,then z = % ., we have that,

[00] [o0]

1 -1 11
flx) = j e dx = 7j et t2dt=—T() =
0

0

~[ 5

1.2.2 Beta Function,[38]:
In many cases it is more convenient to use the so-called beta function

instead of certain combination of values of the gamma function.

The beta function is usually defined by:-
B(z,w) = f01 2711 —1o)" 1dr , Re(z) >0,Re(w) >0 (1.2)
Let us consider the following integral

hyw() = [, 1771 (1 — 0¥~ ldx.
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We have that h,,, (1) = f(z,w) , the Laplace transform is

r r I'(z)-T
Hop(5) = 12100 _ 11 19
The inverse Laplace transform of the right-hand side of (1.3) is,
— F(Z) . F(W) z+w-1
= Ty ¢
If t = 1 we obtain,
B(z,w) = [y Tw) (1.4)

T(z+w)
also, we have B(z,w) = B(w, z).

The definition of beta function is valid only for Re(z) > 0, Re(w) > 0
The formula in (1.4) that obtain the analytical continuation of the beta
function for the entire complex plane, if we have the analytically
continued gamma function. with the help of the beta function we can

establish the following important relationships for the gamma function:

.T(z2) - T1—-2) = =B(z,1—2z), Re(z)> 0.

T

sin(mz)
i.l(z) - T(z+ %) =+\m2%?271(22) ,for 2z+0,—1,—2,--

Var(2n+1) _ Va(2n)!

22nT(n+1)  22%nl

If z=n+%,weget F(n+%) =
iii. follows from (1.2),1f we make the change the variable 7 = ﬁ and

z,w € Zt , we obtain,

oY) = [uw ™t (1 + )~ du,

iv. from [39] we have, B(x,y) = 2 [>(sint)*~!(cost)? " dt.

Example(1.2.2),[24]:

To evaluate f(t) = fg(sin(Zx))Zt'l dx by using beta function

from(iv), we have that  f(t)=/2(sin(2x))**~* - (cos(2x))° dx, now ,let
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2m—1=2t—1, then 2m=2t, we get m=t

2n—1 = 0,then 2n=1, we get n=l

Then, [Z(sin(2x))*~ - (cos(2x))° dx = ~B (¢, ) = e

1.3 Some Types of Fractional (Derivative and Integral):

The several definitions of fractional derivatives and fractional integrals,
such as Riemann-Liouville, Caputo, Riesz, Riesz Caputo, Wely,
Grunwald-letnikov, and Hadaman Chen, etc, are given however, we will
present the definitions of the first two of them.

Let f:[a, b] = R be a function, a a positive real number, n the integer
satisfying —1 < a@ < n, and I' the Euler gamma function.

Definition (1.3.1),[14]:
A real function f(x),x > 0, is said to be in the space C,,u € R, if

there exists a real number p> p such that f(x) = xP f; (x), where
f1(x) € c[0,1],Clearly C, < C; if p < p.
Definition (1.3.2),[48]:
A real function f(x),x > 0,is said to be in the space C]',me N U {0},
if fMecC,
Definition (1.3.3),[14]:

The left and right Riemann-Liouville fractional integral of order

a = 0 of afunction f € C,,u = —1, is defined as follows:

I“f(x)—ﬁf (x =) f(t)dt

and I f(x) = r )f (t —x)*"1f(¢t) dt , respectively.
Definition (1.3.4),[9]:

The left and right Riemann-Liouville fractional derivatives of order «

are defined by:

WDEF() = 22 Bf () = st 2 [ = O ()
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and

DEFE) = (D dp (0 = fts o [N (E = 0N (D de
respectively.
Definition (1.3.5),[ 14]:

Let f € C™,m € N U {0}.The Caputo fractional derivatives of f(x) is
defined by:

X

1 -a—1 n
——a)J(x_t) fFO(t) dt

-a d" —
aD f(x) = I Wf(x) = T(n

a

and
dn
Dy f(x) = (—1)”x1£l‘“—nf (x)
Jo(=DME = 0)m () de

F(n a)-a

respectively, where n is a natural number such that n-1<oa<n.

so, for n=1then 0 < a <1, the relations above take the following

forms:

EDEF(0) = ol - f () = a)f (k- =f(Odt  (153)

[Ft-0Lf@)de.  (L5b)

SDEFO) = = Iy = f () =
Example (1.3.3).[32]:

The left hand Caputo fractional derivative of order 0 < a < 1 for the
function f defined by f(t) = t?, b> 0 is

r(i- a)

DEF(L) = f (t — ) a_s dt

r(1 —
Hence, let s=t v, which implies ds=t dv in the above equation to get:

D f(t) =

_ a b—1
e a)f(t tv) % (tv)P 1t dv.

16



f t (1 —v)" %) (v)P 1t dv.

1"(1 a)
_ ¢h- b-1 -
r(1 ot “f (w)P 11 —v)~* dv.
b— —
r(1 X ~2B(b,1— )

But b T'(b) =T'(b + 1) therefore:
DEF(O) =t

r(b+1-a)
The following properties are presented in details which will be
needed later on :
1.The relation between Riemann-Liouville and Caputo fractional

derivatives:

1 P _
EDEf(x) = DEf(x) — XRZ5 i) (x —a)* %, and

DEF(x) = DEF(x) — SPb LoDy _ yyk-a

T(k—a+1)
Therefore, if
f(@)=f(a) == f®(a) = 0then DZf(x) = DEf(x)
and, if
fb)=f(b) == fV(b)=0then DEf(x) = DFf(x) .[3]
2. Caputo fractional differential have some properties.

I. The fractional operators are linear,

P(uf (x) +vg(x)) = uPf (x) + vPg(x)

where P is a one of D, Df,SD5 , <Dy, oI¥ or I and p and v are

real numbers. [3]

. $DC = 0 ,where Cis a constant. [20],[21] (1.6)
0 forneNyjandn< a
i gDyx™y Tt) g forneNyandn > « [20]
r(n+l-a)
(1.7).
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3.IffeLy(ab)orf €Cla,b],andif @ > 0 then

oD% o5 f(x) = f(x) and Dy Iy f(x) = f(x)
4. If f € C™[a, b], and if @ > 0 then

JEEDEFO) = £ () — Epza T (x — @)k, and

$EDEFGO = 00 - SRy LD (4 — k]
5 Leta>0,n = [a]and f(x) = (x — a)* for some = 0, then

0 if cef{0,1,2,:--,n—1}
aDx f(x) =1 r(c+n) (x — @)@ ifceNandc=n , (1.8)
[(c+1-a) orcéNandc>n—-1

[9]
6. If f is a function such that f(a)=f(b)=0, we have simpler formulas
b
[ 8(0. EDEf(x).dx = [ f(x). (DE. g(x).dx

and

b b

J, 8. 2Dy f(0).dx = [, f(x). oDf.g(x).dx . [3]
7.Let = 0 and n = [a] . assume that f is such that both SDZf (x) exist
then,

DEf(x) = DIf(x) — Yp=h 2L@_( _ gyk-a [q]

k=0 p(k—a+1)
8.The initial conditions for fractional differential equations with Caputo
derivatives take on the same form as for integer-order differential
equations.[3]
1.4 The Chebyshev Polynomials ,[29]:

Chebyshev polynomials take a significant position in modern

developments  including  orthogonal  polynomial,  polynomial
approximation, numerical integration, and spectral methods for partial
differential equations. There are several kinds of Chebyshev polynomials
in particular we shall introduce the first and second kind T,,(x) and

U,(x), as well as polynomials V,(x) and W, (x), which call the

18



Chebyshev polynomials of third and fourth kind's. In addition we cover
the shifted polynomials T, (x) , U,; (x) , V;; (x) and W, (x).
Definition(1.4.6),[29]:

An integrable function w is called a weight function on the interval I if

w(x) = 0forall x in I, but w(x) # 0 on any subinterval of I.
1.4.1 The Chebyshev Polynomial of First Kind,[44]:
It is well known that first kind chebyshev polynomial T,,(z) of degree
n ,which defined on [-1,1] by :
T,.(z) = Cos(n 6) where z= Cos(0), where 6 € [0,7]
and can be determined with the aid of the following recurrence formula:
Th+1(2)=22T,(2) (2) - T,—-1(z) n=1,2,3,..... (1.9)
To(2)=1,T,(2) =z

The analytic form of Chebyshev polynomial T,,(x) of degree (n) is given

by : Tn(z):Z?:/f)(—l)i g2l MOVl onai pop 3

il(n—2N!

and are orthogonal on [-1,1] with respect to the weight function

w1(z2=1/v1 —z2 ,thatis:

. ) Lt nf m=20
|, 01T, (2). T (2) dz={7 n=m=0 (1.10)
0 n#+m

1.4.2 The Shifted Chebyshev polynomial of First Kind,[29]:

In order to use these polynomials on the interval [0,1] , we define the

shifted Chebyshev polynomials by introducing the change variable
z=2x-1, then T, (X) can be obtained as follows :
* () =2(2x-1) TH(X) - Tyog (X)  i=1,2,... (1.11)
where, TJ(x)=1, T;(x) =2x-1
and are orthogonal with respect to the weight function

wi(x)=1/vx — x? , that is:

19



m n=m=20
[} 01T Tp()dx =47 n=m=0 (1.12)
0 n+#m

Remark(1.4.1):

I. we drive the general analytic form which explained as:

* - i ~2n-2i n(2n-i-1)! _n—i .
Ta(X) = Xizo(—1)! 25 mx , n=2.3,...

n+k—1)122k

.. . ron— _(
i Tr()=n YR _o(—1)"k TR x® n=23,... |[4]

Remark(1.4.2),[29]:

It may define Chebyshev polynomials appropriate to any given finite

range [a, b] of x, by making this range correspond to the range [—1, 1]

of a new variable s under the linear transformation

2x—(a+b
¢ = 2x=(atb)

- (1.13)

The Chebyshev polynomials of the first kind appropriate to [a,b] are
thus T, (s), where (s) is given by (1.13) .
Example(1.4.4),[29]:

The first kind Chebyshev polynomial of degree three appropriate to the

range [1,4] of x is

T, (2’“3‘5) =4 (2’;‘5)3 ~3 (2"3‘5) = — (32x% — 240x? + 546x — 365)

Note that in the special case [a,b] = [0,1], the transformation (1.9)

becomes s=2x-1.

1.4.3 The Shifted Pseudo-Spectral Chebyshev Polynomial of First
Kind:

20



In order to use these polynomial on the interval x € [ 0, L ] we defined

the so called shifted pseudo-spectral Chebyshev polynomial of first kind
by introducing the change of variable z= sz -1. thus, T;( sz -1), i=1,2,...

denoted by T”(x) Then T (x) can be obtained as follows :
Thy (0 =2(Z-1)TP(x)- TP, (x), i=1.2.... (1.14a)
where TP (x)=1 and T} (X)zsz,l : (1.14b)

The analytic form of the shifted pseudo-spectral Chebyshev polynomial
of first kind Tip(x) of degree i is given by :

TP (X) = Y1 o(—1)i 22n-2 n@noizD! o n-i (1.15)

i'(2n—=2i)! Ln-t

Note that T” (0) = (-1)" and T} (L) =1, the orthogonality condition is

L
Sy TP TP () 0] (x) dx =g (1.16)
m i=j=0
T[ . . 1
where,0; =42 i=j#0 and,mll’(x)zm :
0 i # ]

A function u(x), square integrable in [0,L] , may be expressed in terms of

shifted Chebyshev polynomials as,
u(x) = XiZob; TP (x) (1.17)
where the coefficients b; are given by,

1 L :
b= fy u@) TP (X).w] (x)dx , j=0,1,2,....... (1.18)

Theorem(1.4.1):

Let y(x) be approximated by Chebyshev polynomials as
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Ym(X) = X% Ci Tp(x) and also suppose o> 0 then,

DY (X))=E T 1) Do € W K (1.19)

where Wl(k is given by,

(0()_ k n2i—2k i(2i-k-1)! (i—k)!
=(-1)"2 k'(2i-2k)! T(i-k+1— a) Li=k (1.20)

Proof:

since the Caputo's fractional differentiation is a linear operation we have
D (Ym(X))=Xi ;- DX(T (X)) (1.21)
Where, TP (X)=[ T (X), T (X),- ..., T, (X)]

Employing equation (1.6) and (1.7), we have

DeTF(x)=0, i=0,1,2,.......... [a]-1, a>0 (1.22)

also, for i=[a],...... ,m , by using (1.7) , we get

-\ i— i(2i—k-1)! .
D* (Tip (X)) —ch=0(_1)k 2212k 001 (Zi2k)I L F D% xi=k

i (2i—k=1)!T(i—-k+1)
(kK)! (2i-2k)!T(i—-k+1— a)Li"k

i-k—«a

Zl [a] (— 1)k 92i-2k

(1.23)

A combination of equations (1.21) , (1.22) and (1.23) leads to the
desired result .

1.4.4 Solution of Multi-Order Fractional Differential Equations :
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Consider the multi-order fractional differential equations of type given in
(1.23)

D*u(X)=F(x,u(x),DE*u(x),...,.DA™u(x)) , X€[0,L] (1.24)
with initial conditions,
u® ) =d,, k=01,......,n (1.25)
where, n<oa<ntl=[a], 0<B;<B,<........ <Bm<a .

By the shifted Chebyshev pseudo-spectral polynomial of first kind as,
u(x) = Ioc TP(x) = 7T (x) (1.26)
where, TP (X)=[ T7 (X), T} (X)s....., TR (X)]
D%u(x)=c"D*TP(x) (1.27)
DSTu(x)=cTDSITP (x) (1.28)
where vector ¢ =[c,, ¢y, ....,¢]T an unknown vector .

By substituting these equations in equation (1.25) we obtain

u(0) =c" TP (0) =d,

uD(0)=c"TP (0)=d), , k=0,1,.......... n (1.29)
In order to use Chebyshev pseudo-spectral , we first approximate u(x) as,
w(x) = Xow; TP (%) (1.30)
From (1.24), (1.30), and theorem(1.4.1), we have

B Sl i) - =

1 1) j—k—
ZmOCiTip(X) m [a]zl [a 1 l(: )Xl k ol ﬁ[am]zl [am] l(Zm) i—k— aml)
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(1.31)
we now collocate (1.31) at m+1-[a] points x,, as,
i1 Dieo | Wi (1) xR,
YT (%)) s Z g Thed al]cwl(zl)(xp)x kool Pl e am]cwl(zm)(xp) xp ko

(1.32)

For suitable collection point x, we use m+l1-[a] root of shifted

chebyshev pseudo- spectral polynomial of first kind T, m +1-[a] (x).

also , by substituting (1.30) in the in initial condition (1.25) we can obtain

[a] equations as follows,
m u TPO0)=d, , k=0,1,........ n (1.33)

m+1-[a] equations in (1.32) together with [a] equations of boundary
condition (1.33) , generate (m+1) equations which can be solved by using
newton's iterative method for the unknown u; , i=0,1,......... m .

consequently u(x) can be calculated .

Example(1.4.5):

Consider the following nonlinear differential equation
D3u(x) + D*/2 u(x) + u?(x) =x*
u(0) =u'(0)=0, u"(0) =2
The exact solution is u(x) = x?, [44].
By using equation (1.29), we get
u@=cy—c; +c,—c3=0
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, 2
U(O)zz -ZC2+TC3:O

" _16 _
u (0)—L_2C2 "2 €7

the systems of equation have , three equations with four unknowns and
Ax=y+#0

By using the shifted Chebyshev pseudo-spectral polynomial of first kind

with m = 3 to obtain 3 .

then the approximate solution will be
L?
mou TP (0 =2+ 5 (Z )+ 5 (B

3L2 5 L? 2
—?'l' XL-—+X —XL+——X

It is clear that the approximate solution coincides with the analytic

solution .

1.4.5 The Chebyshev Polynomial of Second Kind,[29]:
The second kind of degree (n),which defined on the interval [—1,1] as
sin(n+1)0
Un(z) = 25202
These polynomials satisfy the following recurrence relation:
Un(Z) - ZZUn—l(Z) - Un—Z(Z) n=2,3,- (134)

where, U,(z) = 1,U;(z) = 2z.From Rodrigues formula

,where z =cos9 ,0 # nm+ 2km

_ (CDMmAD! s oyt
Un(2) = Gz D 1A = 27077

and are orthogonal on [-1,1] with respect to the weight function

w,(z) =V1 —z2?, thatis:
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(1.35)

N|=|o

f_ll w,(2)U, (2)U,(2)dz = {

1.4.6 The Shifted Chebyshev Polynomial of Second Kind,[7]:

The shifted Chebyshev polynomials of second kind are defined on

interval [0,1] by introducing the change variable z = 2x — 1, then U} (x)
can be obtained as follows:

Un(x) = (4x—2)U;_(x) = U;_,(x) n=2,3,: (1.36)
where, Ug(x) =1,Uj(x) =4x—2
and the analytic form of shifted Chebyshev polynomials Uy, (x) of degree

(n+4r)1 2271 L4
(n+1-r)! 2r!

(n) is given by: Uj(x) = Y41y (—1)nti-r

and are orthogonal with respect to the weight function

w5 (X)=Vx — x? ,that is:
T

fol w;X) U (x) - Up(x) dx = {E
0 m # n

1.4.7 The Chebyshev Polynomials of Third and Fourth Kinds:
The Chebyshev polynomials V,,(x) and W, (x) of the third and fourth

m=n (1.37)

kinds are polynomials of degree n in x defined respectively in [1],[29] by

Vn(x) _ cos(n+%)9 | and Wn(x) _ sin(n+%)9

1 .1
cos—0 sin—0
2 2

where = cos 8 , they may be generated by using the two recurrence

relations V,(x) = 2xV,,_,(x) = V,,_,(x) n=23,-: (1.38)
with the initial values Vy(x) =1, V;(x) =2x—1.
also,

W,(x) = 2xW,,_1(x) — W,,_,(x) n=23,-: (1.39)

with the initial values Wy(x) =1, W;(x) =2x+ 1,
and are orthogonal on [-1,1] , that is

12, 03OV GOV () = [ 00, (1) W ()W () dx = {3
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(1.40)

1+x

where, w3 (x) = |[— , w,(x) = /g are weight function of third

1-x
and fourth respectively.
1.4.8 The Shifted Chebyshev Polynomials of Third and Fourth
Kinds:

The shifted Chebyshev polynomials of the third kind is defined on
[0,1], respectively in [29],[36].

Vix)=1V02x—-1). (1.41a)
and satisfies to the following recurrence formula:

Vpii(x) =2C2x - DV, (x) = Vy_1(x),n=1,2,... (1.41b)
with the initial values

Vix)=1, Vi(x) =4x -3 (1.41c)
also, the shifted Chebyshev polynomial of fourth kind is defined on [0,1],

W, (x) = W,(2x — 1). (1.42a)
and satisfy to the following recurrence formula:

e (x) =2Qx — DW, (x) = W,;_1(x), n=1,2, ... (1.42b)

with the initial values

Wy(x)=1W(x) =2x+1 (1.42c)

The orthogonality relations of V,"(x) and W, (x) on [0,1] are given by

T

f01 w3 )V () Vp (x)dx = fo1 w; ()W, OW, (x)dx = {g m=n

m=+*n
(1.43)

where wi(x) = f%  wi(x) = /1;—" are weight function of shifted
Chebyshev polynomials of third and fourth respectively.

1.4.9 Connections Between the Four Kinds of polynomial,[29]:

1. The relationship between the polynomials T,, , U,, are
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U,(x) —U,_,(x) = 2T, (x),n=2,3,... (1.44)
2. The relationship between the polynomials T,, , U,, and V,, , W, needed

two auxiliary variables:

u= (% 1+ x))7 = cos%@,x € [—1,1]. (1.45)
. T 1
t= (; (1- x)) = sm;@,x € [-1,1]. (1.46)
(l) Tn(x) = T2n+1(u) ) and Un(x) = %U2n+1(u) .

(i) Vo(x) = U Topya () ,and - Wi (x) = Usp(u) -

(i) @) = 5 [ @) + Wa(0)] (L472)
V() = Un(x) = Uns (), (L.47b)
Wo(x) = Up(x) + Up—q(x) (1.47c)

(iv) Wo(x) = (=x) , (neven)

W (x) = =V (=x), (nodd).
1.4.10 Some Relations Between Polynomials and There's Shifted,[29]:
L Topoq(x) = xVy_4 (x%) .
2. Upn—1(x) = 2xUn_1 (x?) .
3. Ugn(x) = Wy (x%) .
4. From (1.25) , we have

Wy_1(W?) = Wy Qu? — 1) = Wy (x) = Upp(w) .

1.5 Wavelet Functions,[16]:

Wavelets constitute a family of function constructed from dilations and

translations of a single function called the mother wavelet ¥ (t). When
the dilation parameter a and the translation parameter b vary

continuously, we have the following family of continuous wavelets
-1 (t—b
Yar® =lalTp(—=)  abeR,a#0

If we restrict the parameters a and b to discrete values as a = aj*,
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b =nbyaz® , a,>1, by >0, for n and k positive integers, we have

the following family of discrete wavelets:

Yien(®) = lal*yp(aght — nby)

Where 1, ,(t) forms a wavelet basis for L*(R). In particular when a, =
2 and by = 1, Yy, ,(t) forms an orthonormal basis this is
< Yrn(@®), Y m(t) >= S Spm » Where, S, is the kronecker
function .
1.5.1 The Chebyshev Wavelets of First Kind,[16]:
The shifted Chebyshev wavelets of first kind v, ,,,(t) = Y(k, 71, m, t)

have four arguments, k€ N,n=12,---,2%1 and A=2n-1
moreover, m is the order of the Chebyshev polynomials of firs kind and ¢t

is the normalized time, and they are defined on the interval [0, 1) as

2t Ty (2¢t — 7 Il
Unm(t) = { 2 Ty (2%t — 1) 2 St<5 (1.48a)
0 otherwise
1
\/_ﬁ m=20
Where T, (t) = . (1.48b)
\/; T,(t) m>0

where m=0,1,---,M —1 and M is a fixed positive integer. The
coefficients in (1.28b) are used for orthonomality.

with the weight function w] = w,(2t —1) has to be dilated and
translated as follows:

wi () = w, (2%t — A)

and w, (2t — 1) has to be dilated and translated as follows,

1
J(zk t—n)-2kt-n)?2 .

1.5.2 The Chebyshev Wavelets of Second Kind,[2]:

w2k t-n) =
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Chebyshev wavelets of second kind W2, (t) = W2 (k,n,m,t) have four
arguments k , n can assume any positive integer , m is the order
Chebyshev polynomials of second kind, and t is the normalized time.

They are defined on the interval [0,1] by,

k+3
n n+1

w2, () =] 7= Um(2“t- n) t € Lol (1.49)
0 0.W

m=0,1,...... M, n=01,......2k-1

with the weight function w; = w, (2t — 1) has to be dilated and

translated as follows:

W37 (1) = Wy (25t — 11)

and w, (2t — 1) has to be dilated and translated as follows,

w2k t-n)=\/(2kt — n) — 2kt — n)?
1.5.3 Function Approximation,[16]:

A function £ (t) defined over [0, 1) may be expanded as follows:

f©) = Xuz1 Xm=0 CnmW¥Pnm (t) (1.50)
By the shifted Chebyshev wavelets of first kind, where
= (F(©), Yum(®)

If the infinite series in (1.29) Is truncated, then (1.29) can be written as
f(®) = T35 I com¥Pnm (®) = TY(D) (151)

where, ¢ and y(t) are 2¥71M x 1 matrices given by

c = [C10: C11, " CoM—1, €200 " » Cam—1, "+ » Colim1gy *** Czk-1M—1]T (1.52)

Y =

[$10(, 11O, -, Yam-1 (8, P20(), - Yo (B, -, Ppimsg (8), -, emsygy (B)]

(21 1)
2km

Taking the collocation points t; i=12,---,M

where m = 2¥~1M, we define the wavelet matrix @,,,,,, as
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O = [ () (2). - (22 asa

2m 2m 2m

Indeed @,,,x., has the following form:

A 0 0 - 0
[0 A 0 - 0]
Brxm =[0 0 A - 0] (1.54)
h 0 0 - ﬂ
where A is M x M matrix given by
Pi0(cD) Yiol) v Yo ]
. @(ﬁ) zpu(%im) zpu(f’;;l) (1.55)
_¢1M—1($) lle—l(%) ¢1M—1(2727:11)_

For example, for M = 4 and k = 2, shifted chebyshev matrices of first

kind can be expressed as @,,,xm = ‘g 2
and for the chebyshev matrix we have
1.12838 1.12838 1.12838 1.12838

—1.19683 —-0.398942 —0.398942 1.19683
0.199471 -1.39630 —1.39630 0.199471

0.897621 1.09709 —1.09709 -0.897621
for example k = 1 and M = 2, we have the shifted chebyshev wavelet

A=

of first kind can be expressedas: n=0,and m = 0,1

1~ V2
Yoolt) =22 Ty(2t +1) = N

- ; —1<t<=,
Yo1(t) =22 T (2t + 1) =\/—E(2t+ 1)

2
And for example k =0 and M= 1 , we have The shifted chebyshev

wavelet of second kind can be expressed as :

n=0,and m=0,1
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3

Yo,0(t) = \/_—Uo(t) =

3

0,1 (0) —\/—— Ui(e) =

t € [0,1]
(4x — 3)

ﬁ w§|l N

1.5.4 Convergence Analysis:
Theorem(1.5.2),[18]:

A function f(x) defined on [0, 1), is with bounded second derivative,

say | f (x)| < B, can be expanded as an infinity sum of shifted Chebyshev

wavelets of first kind, and the series converges uniformly to the function

f(x). Explicitly, the expansion coefficients in
1
= (F©.bum©®) = [ 05O FO () e
0
Satisfy the following inequality

21T'B
|| < —22—.
(2n)2z (m?-1)

Theorem(1.5.3),[2]:

A function f(x) € L3,[0,1], with |f(x)| < L, can be expanded as an

infinity sum of shifted Chebyshev wavelets of second kind, and the series

converges uniformly to the function f(x). Explicitly, the expansion

coefficients in cm = (F(6), Ynm(t)) = Jy @3() - F(E) - m(t) dt
SML

Satisfy the following inequality |cp .| < .
(n+1)2(m+1)2

Theorem(1.5.4),[29]:

Assume that a function f(x) € L,:[0,1), w}=4t/1—t with

| f (x)| < L, can be expanded as an infinity series of shifted Chebyshev
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wavelets of third kind, then this series converges uniformly to f(x).

Explicitly, the expansion coefficients in
1

Chm = (f(t): l/}n,m(t)) = ng(t) f(t) 'wn,m(t) dt

*
wy
0

Satisfy the following inequality
2+/2m-L-m?
5

(n+1)2 (m*-1)

|cn,m|S vn=0,m>1.

The following theorem appears in [29], The proof is similar to that exist
for w3 in reference [29].
Theorem(1.5.5):

Assume that function (x) € Liﬂ; [0,1] , w; = /1;_9: with |f(x)| <N,

can be expanded as an infinite series of fourth-kind Chebyshev wavelets ;
then this series converges uniformly to f(x). Explicitly, the expansion

coefficients in

e = (FObm(®) = [} 03O F©) tnm(®) dt. (1.56)

3.NNm3

satisfy the following inequality |c,,,| < .
V2:(n+1)2-k(k+1)

Proof:
From (1.35), it follows that

k+1 n+1

2 2 ok i i
Crm, = 7= @) - Wi (2%t —n) - wi (2%t — n)dt.

2k

cosf+n .

Let (2%t —n) = cos@ then t = —— yield dt = ;—;sinH do

K n+1

2% - T —n=cosO thus 6 =0

Zk-i—nzcose therefore 9=E
2k 2
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272 (% /cos@+n . . -1
Crm = \/Efzf(z—k)-Wm(cose)-a)4(c059)-Z—ksmede

1-k
272 (% /cos@+n :
(—) * Wiy (cos8) - wy(cos @) - —sin 6 do

since W, (cos@) = W,,(2cosfB — 1)
1-k
2z (° (c059+n) W (2 cos 6 — 1) - w3 (cos 6)
Crm = = o 7> (2 cos wy (cos
- (—sin®) d6

f f (COSBM) W, (x) - wy(cosB) - sin6 dO

1 k

in(k+3)6  [1-
=1 fonf(cosam)_sm( ). €050 . VT —cos0.VI+ cosf df

2k sing 1+cos @

= ‘/E_kf”f(cosem) - sin (k +%)9 - sin%d@ :

2k

cos 9 + n
* [cos(kB) — cos(k + 1)0] dO

(cos 9+n) o . (sinl((ké?) _ sin;i-l-ll)e) do

-sin @ - sin(k8) dO

w

1+

f cos@+n

1+k

277 .(k+1)70
1) f f (C059+n) sin(k@) - sin 8 d@

VT ”f<c059+n

% ) -sin@ - sin(k + 1)0 d6

cosf +n

_ f "7 (T) : [% (cos(k —1)6 — cos(k + 1)9)] do
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_ 7 (coszek+ n)
- [msin(k ~1)6 - ﬁsin(k +1ol|

1 T y/cos@+n\,
+2k_2_]; f(—zk )-sm@

sin(k —1)6 sin(k +1)6 I
k—1 k+1

2)fO”f (Coszim) -sin @ - sin(k + 1)0 d6

T _/cos@ +n 1
= f f (2—k> - [7 cos(k@) — cos(k + 2)0|d6
0

_ s(cosf +n . sin(k@) sin(k + 2)6
_f( 2k )[ 2k 2(k+2)]

1 T y/cos@+n\,
+2"-2L f(—zk )-sm@

. [sin(k@) B sin(k + 2)6

(0
0

k k+2 a6

Thus,
R

y1/C0s0 +n\
=3 [ F(0 o
272 0

.1 sin(k —1)6 sin(k + 1)6
[E( k-1  k+1 )

1 [sin(kB) sin(k + 2)6 i
k+1 k k+2

Voo (T y/cos0 +ny 1 1
~ 343k ( 2K >'[Erm(6)_k+1dm(9)]d9

272 70
. . ] sin(k—1)6 . sin(k+1)6
Since 7;,,(0) = sinf [ . 1 ]

i (6) = sing - [sinik@) B singck++22)9]
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we get,

Voo (T s/cos0 +ny 1 1
|Cnm| = 23+23kjo f<T>.[Erm(9)_k—+1dm(9)] de
Va.N (T|s/cosf +n
<o | [ (E)
2
2= 2 .70
- 0 —1 d.,(0)||do
7 ® = @)
However,
1

1
ETm(Q) - k—+1dm(9) do

;

_1 Jn o [sintk = DO _sinCk + D
=7 , Sin - k—1 k+1 |
1 j” _ sin(kf) sin(k + 2)6] do
krily [ k ket 2
From (1),(2), we get
3 \/EN 2.1 2T
Cnm 23+23k k(k?—1) k(k+1)(k+2)
3NVr3
< o
2 2 k(k+1)

Finally, since n < 2% — 1 we have,

. 3
e | < 3.N§\/Tc_
V2.(2K)2-k(k+1)
3.N.vm3
lcnm| <

\/E-(n+1)%-k(k+1)
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CHAPTER TWO
Operational Matrices of Fractional
Derivative for Solving (MFNDE)

2.1 Introduction:

In some cases, the analytical solution may be difficult to evaluate ,
therefore numerical and approximate methods seem to be necessary to be
used which cover the problem under consideration. The method that will
be considered in this work is to find the operational matrices of fractional
derivatives for different types of Chebyshev polynomials to find the
solution of  multi-fractional  order nonlinear  differential
equation(MFNDE), also, the author method that will be considered in this
work is the operational matrix of fractional derivatives of Chebyshev
wavelets functions for solving the multi-fractional order nonlinear
differential equation(MFNDE) .

The relation between the different types of wavelets Chebyshev has
been given as a relation between the operational matrices of these types
with their proving in details . So the general operational matrices are
presented to support the filed in these projects.

This chapter consists of three sections. In section (2.2), the operational
matrix of fractional derivative for Chebyshev polynomial of shifted first
kind and shifted second kind is presented. In section (2.3), the operational
matrix of fractional derivative for Chebyshev wavelets of shifted first,
second, third and fourth kinds is given. Finally, in section (2.4), the new
relation between operational of fractional derivative for Chebyshev
wavelets of shifted second with third kinds, Chebyshev wavelets of
shifted second with fourth kinds, chebyshev wavelets of shifted second,
third and fourth kinds, Chebyshev wavelets for shifted first with second
kind is presented.

2.2 The Operational Matrix of Fractional Derivative for Chebyshev
polynomial:

The proposed operational matrix formulation of fractional order
derivative a>0 for shifted first and second kinds Chebyshev polynomial is
denoted by D*@(x),D%p(x) , respectively ,where @(x) =
[To (), T (x),..., Ty (x)]" and
o) = [Ui(x),U;(x),...,Us(x)]" together have been expressed in
details.
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Theorem(2.1.6):
Let @(x) be shifted first kind Chebyshev vector defined as
O(X) = [Tg(x), Ty (%) ,..., Ti(x)]T and also suppose a>0 then
D% @(x) = A“@(x)
where, A% is (m+1)(m+1) is an operational matrix of fractional derivative
of order >0 in the Caputo sense and is defined as follows,

0 0 0
0 0 0
(€] (€] (D)
A% = Wo,0,i Wo,1,i Wom1,i
n—fal (1) n-fal (1) n—fe] (1)
Z1—0 Wh- [a],0,i 2i=0 Wn—[ot],ll 21—0 n—[o],m,i
@ W @
{EO Wm 0, :EO Wm,l i :EO Wm,m,i
(2.1)
€]
and, w M]l is given by
w(l) (= 1)K+ g2-2k+zn-2i n(2n—i-1)}(2j-k-1)! T(n-i-a+j-k+3)
[alji~ \/— =0 il(2n-2D! T(n—i—a+1)k!(2j—2Kk)! [(n—i-a+j—k+1)

(2.2)
_ _(1 j=0
where, n=[a]...m, and o,—{z i %0
Proof :
Let Tx,(x) be shifted first kind Chebyshev polynomial then by using
(1.7) we can find that,

D* T;(x) =0, n<[a], and for n > [a] .

* (2 1)' —i
DTy () = Zilo(~1)! 2202 EBmer pe -t
:Zn—[ (_1)1 22n 2i

i=0

n(2n—-i-1)!T'(n—i+1) n—i—o
il(2n-2D)!T(n—-i—a+1)

(2.3)
Now, approximate x"7'=% py (m+1)-terms of shifted Chebyshev
polynomial of first kind , we have

XM= dy i T (X) (2.4a)
where ,
. _
dn-ij = ]f mT(?)d: ) (2.4b)
j2j-k-1! _;
T ()= Eheo (1D 2% kax (2.4c)

1 xn—i—a+j-k

_0j «j k ~2i—2k J(2j—k-1)!
then, dn—i,j — Zk=0(_1) 297 Kk!(2j—2K)! fO Vx—x2 ax

92j- ok J@i—k=D!T(n—i-a+j- k+—)\/_
k!(2j—2Kk)! T(n—i—a+j—k+1)

where,
(2.5)

=2 Feco(—DX
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(1 j=0 s :
Oj —{2 %0 . By substituting (2.5) in (2.3), we get

D* T;(X) = Zn [a] jrr;o(_l)i g2n-2i __n@n-i=Din-i!

il(2n-2D!T(n—i—a+1)

n—i,j T; (X)

n(2n—i-1)}j(2j—k-1) [(n—i—a+j-k+5).(n-D)1
il2n-2D! I'(n—i—a+1) k!(2j—2K)! T(n—i—a+j—k+1)

9j Zn [a] =0 ZL=0(—1)k+i 22j—2k+2n-2i

(X)
where,
. e fs . . 1
1 _ 4K+ n2j—2k+2n-2i n(2n—1—1)!](2]—k—1)!F(n—l—oc+]—k+5)
Wn =lalji = x Z ~o( H*z il(2n—2)! T(n—i—a+1k!(2j—2Kk)! T(n—i—a+j—k+1)
(1)
D T (X)=2%[ Titowish 1Ta(9) for n>Ta]. (2.6a)

=2 w0 T Wi S W i 900
Jfor n>Ja] also, D* T;(x)=[0....... 0]0(x), n<Jal.
(2.6b)
2.2.1 Function Approximation of Shifted Chebyshev polynomial of
First Kind,[44]:
The function u(x) square integrable in [0,1] , may be expressed in the
term of shifted first kind Chebyshev polynomial as:
u(x) = 220 ¢ Ty (%)
where the coefficients c; are given by in (1.12) .In practice , only the first
(m+1)-terms shifted first kind Chebyshev polynomial are considered
then we have u,(x)=X2,¢T () =CTo(x) ., where
BO)=[T; (), Ty (X ..., Ta()]
Example(2.1.6):
Consider the following multi-fractional order nonlinear differential
equation

D*u(x) + D%u(x) + u3(x) = x° (2.7)
subject to the initial conditions
u(0) =u®0)=u®@0) =0 , u®©) =6 , [19] (2.8)

To solve the above problem with m =4, by equation (2.1) from
theorem(2 1.6), we have that

>

NI

Il
S cococo.
B~
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[0

= |o
l0 0 0
0 61299 -—-12.26 5.254 -2

©C oo o
[N e)
oo O

—

0
0
0
0
919

} =3072¢c,

2]
(2.9a)
by using the first root x, = 0.5 of the polynomial T ,;_jo(X) ,we have
that

Dgu(x) = CTA%(Z)(X):

D*u(x) = CTA*@(x) =(Co €1 ¢, C3 C4)[
|

(=)
Je o oo

3

[0 0 0 0 0 i 1
|0 0 0 0 o | 2x—1
(G0 €1 c; € C)f0 0 0 0 o | 8x%? —8x+1
0o 0 0 0 o |l 32x% — 48x2 + 18x — 1
lo 61299 —1226 5254 —29190l128x% — 256x3 + 160x% — 32x + 1
(2.9b)
and,
uw(x) = (CTO(x))3
[ [ 1 1
| 2x—1 ||
=[(Co €1 c, €3 C4) 8x%? —8x+1

[ 32x3 — 48x? + 18x — 1 JJ
128x* — 256x3 + 160x? — 32x + 1
= (co — €3 +¢4)°
(2.9¢)
by substitute (2.9a),(2.9b),(2.9¢) in (2.7), we get
(2.10) 3081.341 ¢, + (co — ¢, +¢4)® = 0.00195

from(2.8) ,we have that

1
2x—1
cT@(0) =(Co €1 c, C3 C4) 8x%? —8x+1
32x3 —48x% +18x — 1
128x* — 256x3 + 160x% — 32x + 1

=Cp—C +cy—c3+cy (2.11)

and in derivative of zero are

I
cT(D(l)(O) =(Co C1 ¢, C C4) 16 x—8
96 x%2 —96x + 18
512 x3 — 768 x> + 320 x — 32
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=2c¢;—8c;+18c3—32¢, (2.12)

0
| 0
cTQ)(Z)(O) =(©Co €1 c, C3 Cy) 16
192x—96
1536 x% — 1536 x + 320
=16c,—96c3 +320c, (2.13)
0
[ 0 1
cTP3(0) =(Co €1 c, C3 Cy) 0
192
3027 x — 1536
=192 c; —1536¢, (2.14)
by(2.14)and(2.13),we get
3=t =g+, =280+ (2.15a)

from(2.12)and(2.11),we have
_32 1536 ¢, + 6
= [ ( 192 (2) )]
320 8[96 (1536 ¢, + 6)]
+ _C4 +
2(16) 2-(16)(192)
=126 ¢4+ (2.15b)

3 1 15 5
co=—c,—28¢,——+ (B, + )+ (126 ¢, + —2)_105c4+1—6

(2.15c¢)
by substituting(2.15)(a),(b),(c)in (2.10), we get
3081.341 ¢, + (78 ¢, + 0.125)3 — 0.00195 = 0 (2.16)
from(2.16), yield
¢, =0, and from (2.15)(a),(b),(c), we getc; = — , c; == , ¢; ==,
5

16
Hence, the approximate solution is

Co = —

1
( |r 2x—1 ]|
yx)=(=— = = = 8x%2 —8x+1 —
16 32 16 32 l 32x3 — 48x2 + 18x — 1 J
128x* — 256x3 + 160x% — 32x + 1

(2.17)
Theorem (2.1.7) :-
Let @ (x) be shifted second kind Chebyshev vector defined in
@(x) = [Uj(%),U;(x), -, Ux(x)]Talso suppose o > 0 then
D%@(x) = A%p(x)
where A% is the (m+ 1)(m + 1) operational Matrix of fractional
derivative of order o in the Caputo sense and defined as follows:
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0 0 0
0 0 0
0 0 0
2 2 2
pee | Towd o BLwl . BRawi, (2.18)
. ) . 5 H 5
s Wr(1+)1 0,r s Wr(l-l-)l,l,r DA Wr(1+)1 m,r
"2 2 : 2
r=2 Wr(n?o,r re2 Wr(n?l,r re2 Wr(n?m,r |
and
(2) 4 p+l r£(=1)MFPH2=(40) (n4r)I(p+£)! (r—1)! 22¢+1)~2 F(r—a+{’—%)
Wn+1'p o met=0 (n+1-r)! 2r' T(r-o).(p+1—-%)! 2¢!' T(r—oa+£+1)
(2.19)
Proof:

Let Uy, (X) be Chebyshev polynomial of shifted second kind ,then by
using (1.7) we can find that,
DUi(x) =0, n<J[a] andforn = [a] we have
X n+1 _ (n_l_r)! 221‘—1 _
DU () = Zrzor DA o s R
(m+0)!1 227 -1l 41
(n+1-n)! 2r![(r-a)

= N (-1

(2.20)

Now, approximate x*~*~1 by (m+ 1)-terms of shifted second kind
Chebyshev series, we have

X' =30 0 droy p Up(®) (2.21a)

where, dy_; , = %fol X" Vx — x2 Up(x) dx (2.21b)

8P L(—=1)PH T (p + ) 2% !
= —Z =1 b+ Xl_lj Vx —x2xe 1t dx
0

T Ly—g (p+1-—-2) 22!
_ izp"'l 2(=1)PH1=¢ (p4p)1 22¢-11 (r—a+€—%)
Vm =0 (p+1—8)! 28! T(r—a+£+1)

(2.22)
Then,
DUz (x)

_ n+1 m . (Il + I‘)' 22r—1(r _ 1)| )
B Zr=2 zp=0 =D (m+1-0)!2r! [(r— dr-1.p Un ()

22040-2 (4 1)1 (p+£)!(r—1)'T (r—a+e—§)

n+1y'm p+1(_1)n+p+2—(l+r)r
T (n+1-0)!@2)!IC(r—a).(p+1-2)! (28)! T(r—a+£+1)

4
\/_EZrzz p=0 4y¢=0
where,

Un(®)
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()

Wh+1 p.r

4 ~p+1 . A(=1)PFPH2=CHD) (n 4+ ) (p + £)! (r— 1)! 22¢+D=2 (r —a+f— %)
:VEELﬂ m+1-! 2r Tr—a).(p+1-O)! 28! T(r—a+£+1)
* 2 *
DU () = ZiLo [Zi w®, L | Un) (2.23)
2 2) 2
[ {‘1:21 Wn+)1 ,0,r ?:21 Wr(1+1,1,r » T ?:21 Wr(l-l-)l ,m,r ] (P(X)
for, n = [a]

and, D*U;(x) =[0,-+,0] @(x) n < [al.
2.2.2 Function Approximation of Shifted Chebyshev polynomial of
Second Kind,[7]:

The function f(x) square integrable in [0,1] , may be expressed in the
term of shifted second kind Chebyshev polynomial as

u(x) = X2, ¢ Ui (¥)

where the coefficients c; are given by in(1.37)
In practice , only the first (m+1)-terms shifted second kind Chebyshev
polynomial are considered, Then we have

3= ) G Ui =CTow)

Example(2.1.7):
Consider the following multi-fractional order nonlinear differential
equation

D3u(x) + Dgu(x) + u?(x) = x* (2.24)
subject to initial conditions,
u(0) =u®0) =0 ,u®0) =2 (2.25)

with exact solution y(x) = x2. [44]
To solve the above problem with m=3. From(2.18), we have that

0 0 0 0
0 0 0 0 }
5 0 0 0 0
A2=| 3 3 3 3 |
) @ @ ()
ZW3 ,r,0 ZWB ,r,1 ZWB ,r,2 ZW3 ,r,3J
-r=2 r=2 r=2 r=2
0 0 0 0
5
2 0 0 0 0
Az= 0 0 0 0 ]
12,472 x 10> 2.895 x 10® 7.757 x 107 30172 x 10°
D3u(x) = CTA3p(x) =(co €1 C2 c3) l 8 ] = 384 ¢4 (2.26a)
384
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| : |
w2 |
W) = (CTo00)* = (0 & = C3)[ 16 x2 Z 16x+3 ]l
| 64%x3 — 96 x2 4+ 40 x — 4l

by using the first x, = % of root Up 1o (X)

5 5
Dzu(x) = CTDzg(x)=
0

0 0 0 1
0 0 0 0 4x —2
(o €1 @2 c3) 0 0 0 0 16x2—16x + 3 ‘
2.472%10° 2.895x10° 7.757 x 107 3.172 x 10°/164 x3 — 96 x2 + 40 x — 4

= 247200 c5 — 77570000 c; = —77322800 c,
(2.26Db)
2

[ 1 ]
W20 = (CTo(0)? = ll(co o C3)l Lo 16143 “

64x3 —96x*+40x—4

= (co — 2)? (2.26¢)
from(2.25),we have
C0_2C1+3C2_4‘C3=0 (227)
4c;—16c,+40c;3=0 (2.28)
32¢,—192¢c3 =2 (2.29)
from(2.29)and(2.28),we get
192 c3+2 1 1

2 = 3(:23+ == 6 C31+ E thus C2 == 6 C3 + E (2308.)
4c1—16<6c3 16>+40c3 0
4c;—96c3—14+40c3 =0 yelid ¢; =14 ¢4 +i (2.30b)

from(2.27)and(2.26),we obtain

1 1
—-2(14 — — | —4c3 =
Co ( c3+4>+3(6c3+16> c3=0
co—%—28c3+18c3+%—4c3=0thusc0=14c3+%

(2.30c)
By substituting(2.30)(a),(b)and(c) in (2.24), we get
2
—77322416 c; + (8 c3+3) —0.0625 =0 (2.31)
by(2.31), we get
cs = 0 ,and from(2.30)(a), (b), (c),and(d), we get,
1 5

1
— , i =-,Ch=—.
16 * 17 4 7 707 46

Hence, the approximate solution IS

5
y(x)—1—6+4(4x—2)+—(16x —16x+3)+0

=———+x = x?

C2=
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2.3 _The Operational Matrix _of Fractional Derivative for
Chebyshev's
Wavelets:
New proposed operational matrix formulation of fractional order
derivative o>0 for shifted first and second kinds Chebyshev wavelets
denoted by D*WL_ (t),D*W2_ (t).

2.3.1 The Operational Matrix of Fractional Derivative for
Chebyshev Wavelets of First Kind:

The shifted Chebyshev wavelets of first kind W1, (t) = P1(k, fi,m,)
have four arguments; k€N, n=1,2...., 2%~ and fi = 2n — 1; moreover, m
is the order of the Chebyshev polynomials of first kind and t is the
normalized time ,where it is generalized of [16]

k -
/ * = n-1 =
wl (t) = {2 2T (2K t-1) <t < nz_t(l
0 0.W
(2.323)
1
\/_ﬁTm m=0
Where, Ty = .
ETm m> 0
(2.32b)
m=0,1,....... M,n=1.2,...... 2kt
(2.32¢)

The weight is wg (t) = wi , (2t -01) .

. -\ 1
Where w] (Zkt_n)_\/(Zkt—ﬁ)—(zkt—ﬁ)z'

2.3.2 Function Approximation of Shifted Chebyshev Wavelet of First
Kind:

A function f(t) defined over [0,1], may be expanded as follows:
f(O=25=0 Zim=0 € nm Yim(D) , (2.33a)
where, cim = (f(1) , Win(®) Juw = [, W(0) f() WL, () dt
and

(1) = X257 TN oo Coim ¥ hm(® =7 W (1) (2.330)
where, C =[C1g, Cpq ) wer vee Cgkmtppy e v e Cokm1 1y ne e Cokmt gy | T
Thus,

Wi O =[Wlo Wit o, Wi oo Wity ooe s Waken 1 oy Wit 17
Theorem(2.3.8) :

Let WL (t) be shifted Chebyshev wavelets vector of first kind and also
suppose a > 0, then
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k
Cm -2 /2

DYWL, (D)(t) = D* ( T (2K t- 7)) = A Wl (1), such that

V1
C, = {1 m =0 , Where A“ is the (m+1) (m+1) operational matrix
V2 m>0

derivative of order (a) in the Caputo sense and is defined as follows ,

_ 0 b

0 0 0

A(x:l W(?,O,l W,Ov'i]"l aen W(;fn'l

S Wi Zio Wmfaii - Zico Wiolalmi

[ XiZ0 Wm0, i=0 Wm,1,i i=0 Wmm,i
(2.34)
and wy, i 1S given by
Win—falji =

m(2m—-i-1)!(m-i)!j(2j—k-1)! r(m—i—a+j—k+§)
it(2zm—-2i)! T(m-i—a+1)k!(2j—2K)! [(m-i—a+k+1)

0']' i . . _ .
\/_Ezi(=0(_1)k+1 22(]+m) 2(k +i)

(2.35)

h o 1 j=20
where, 0,-{2 P %0
Proof:

Let T, (2X t - fi) be shifted Chebyshev wavelets of first kind. Then by
substituting (1.6)and(1.7)in remark(1.4.4), we get
DTy (2Kt-1) =0 m < [a],and for m > [«a] we get

* k ~\ — i n2m—2i m(m-i-1)! k - s
DO(Tm (2 t-n)—Z?:lo(—l)‘Z m=21 m Da (2 t — Tl)m t

from(1.8), if we replacing x = 2Kt and a=1,

we get

m(2m-i—1)!(m—-i+1)! ~ —j—

i!(2(n—2i)!l"2n(l—i—oc+)1) (2t — mymie
(2.36)

now, approximate (2Kt — fi)™~1-% py (m+1) terms shifted chebyshev

wavelets of first kind, we have

(2Kt — @)™ =30 dpy; T (28-0) (2.37a)

T} 2Kt-1) dt

\/(Zkt -f)-(2kt-1)>2

= ZEB [o] (_1)1 22m—2i

where, dp,_j; :%’ fol(Zkt — fym-i-a

(Zk t— ﬁ)m—i—oc+j—k

AR k 52j—2k J@j—k-1)! (1
= —1)* 27 dt
nZkzo( ) k!(2j—2Kk)! OJ(Zkt—ﬁ)—(zkt—ﬁ)Z
1 j=0
where, sziz %0
Then,
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o : . 1
(_1)k 22j—2k ](2]—1.<—1)! F(m—1.—a+]—k+5)
k!(2j-2k)! T(m—-i—a+k+1)

G]Z

(2.37b)

m Lj
Therefore ,
DTy (2Kt - 1)

m-[a] v'm ,_ 1\i n2m-2i _ m@m-i-1)!(m-i)!
=dizo  2j=o(—1)'2 i1(2m—2i)!T(m—i—a+1)

dm-—ijTm (2" t - i)

=S [Eim Wil Tin(25t-5). (2.38)
D Wi ()=
[Zirzg[a] Wr;l—[a],o,i! 2?;6[0(] Wr:l—[a],l,i ryrr ZEEM W;l—[oc]m,i]qjlﬁm (t)
for, m > [a]
and
DYWL (1) =10,....0] ¥}, (1) form < [al. (2.39)

Example(2.3.8):
Consider the following multi-fractional order nonlinear differential
equation

3 1 1 3
D3u(x) + Dzu(x) + Dzu(x) + u?(x) = 2.257 xz + 1.505 xz + x*

(2.40)
with initial condition,
u(@ =0, U0 =0, u®)=2 (2.41)
and, m=3, k=1 , with exact solution u(x) =x%. by
use(2.32)(a),(c),the wavelets polynomial with  m = 0,1,2,3 and n=1
o0 = ZTy@2x—1) = |2
X) =— x—1)= |-
1,0 \/E 0 .
2
X) = — 2x—1 —(2x—-1
Y (x) = \/2_ Ty ( ) = \/ZE( )
wlZ(X)_f (2x—1)—f(8x —8x+1)
X) =—=T.(2x— 1) = —=(32x3 — 48x%* + 18
Pq3(x) N 3( ) \/E(
by(2.34), we have that
-0 0 0 0
3 Zilzo Wioi Zil=0 Wi Zilzo Wioj Zilzo Wisj
fe= Zizzowf,o,i 212 oW1, Zizzo Wioj Zizzo Wisj
3 Zigzo W3 0,i 13 oW31,i Z?:o W3 o Z?:o W33
-0 0 0 0
_10 0 0 0
~lo 3831 -0.766 0.328
0 -10.727 6.349 —2.165
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A2
-0 0 0 0
0 0 0 0
2 2 2 2
_ waol zwfll Zwiz,i ZW1~31
i=0 i=0 i=0 i=0
3 3 3 3
W2~01 W;ll W;,Zl W2~31
i=0 i=0 i=0 i=0
0 0 0 0
_|0 0958 —0.192 0.082
10 —-0.766 1.204 —0.377
0 —5.099 —-2.794 1.172 0
D3u(x) = CTA3Y (D) =(co €1 C2 ¢3) 8
271.5290
= 271.5290 c4
(2.42a)
by using the first root x,, = 0.8 of T} ,1_,(x)
3
Dzu(x) = CTW,, (1) =
0 0 0 0
0 0 0 0
(€ 9 @ ) [o 3831 —0.766 0.328]
0 —10.727_ 6349 —2.165
2
T
2 (2x-1)
2 (ox—
NEL:
2 (8x2 —8x+1)
— X~ — oX
NET:
i(32)(3 —48x%+18x—1)
LV ]
= 2.4892 c, — 6.9818 c;4 (2.42b)

1 1
Dzu(x) = CTD2W}, (t)=
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—-0.766  1.204 —-0.377
0 —5099 -2794 1.172

2

Tt

0 0 0 0
(co &1 € CS)[% 0.958 —0.192 0.082]

2
NA:
(8x2 —8x+1)

(2x—1)
2
Vr

2
—(32x3 —48x%? +18x— 1)

BVT:
= 0.6225 ¢, — 0.5008 ¢, — 3.8072 c, (2.42¢)

2
w2(x) = (Wi (0)
= (0.6770 ¢c; — 1.0561 c3 — 0.3159 ¢, + 0.797 ¢,)?

by substituting (2.42)(a),(b),(c)and(d)in (2.40), we get
0.6225 ¢, +1.9884 c, + 260.74 c; + (0.6770 c; — 1.0561 c5 —

0.3159 ¢, + 0.797 ¢y)? = 3.505 (2.43)
and, from(2.41), we have

2 2 2 2
\/;co—\/—ﬁc1+\/—ﬁc2—\/—ﬁc3=0 (2.44)
4 16 36
?g/_g Cl - EZ CZ + \/_E C3 = 0 (2.45)
\/_E CZ - ﬁ C3 = (2.46)

¢, = 0.5888 ,c; = 0.5694 ,c, = 0.1613 ,c; = 0.0084
y(x) = coWy,0(x) + ¢y 1 (%) + Py (%) + e3Py 3(%)

_ 2 2 _ 2 (8x2 —
= 0.5888 (\/;) +0.5694 [ﬁ (2x 1)] +0.1613 [ﬁ (8x

8x + 1)] + 0.0084 [%(32x3 — 48x% + 18x — 1)]

— 0.47 + 0.642 (2x — 1) + 0.182 (8x% — 8x + 1) +
0.0094 (32x3 — 48x%? + 18x—1)

= 0.0006 — 0.0028 x + 1.0048 x? + 0.3008 x> (2.47)
Table(2.1)
X Exact solution Approximate solution
0.1 0.01 0.011
0.2 0.04 0.043
0.3 0.09 0.098
0.4 0.16 0.179
0.5 0.25 0.288
0.6 0.36 0.426
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0.7 0.49 0.594
0.8 0.64 0.795
0.9 0.81 1.031

2.3.3 The Operational Matrix of Fractional Derivative for Chebyshev
Wavelets Of Second Kind,[29]:

The second kind Chebyshev wavelets W2, (t) = ¥2 (k,n,m,t) have four
arguments k,n can assume any positive integer , m is the order of second
kind Chebyshev polynomials ,and t is the normalized time. They are
defined on the interval [0,1]

k+3

* +1
w2, (=] = Un(2"t-n) t € [, o] (2.482)
0 0. W
m=0,1,......M,n=0,1,...... 2K-1 (2.48Db)

The weight function is w, (t) = w3 ,(2¥t-n)

where, w3 ,(2Xt-n)=/(2kt — n) — 2kt — n)2

2.3.4 Function Approximation of Shifted Chebyshev Wavelet of
Second Kind,[29] :

A function (t) defined over[0, 1] may be expanded in terms for
Chebyshev wavelets of second kind as

f()=2nz0 Zim=0 Cam ¥im (1) (2.49)
If the infinite series is truncated, then function approximate for f(t) can be
expressed as

(=225 ZM-0 Cam Pom (D= TWEn (O (2.49b)
where , com = (f(t) , W2n (1) = [ 0n (D). f(5). W2, () dt
since, C and P(t) are 2¥ (M + 1) x 1 matrices defined by

_ T
C - [ COO y COI 9 cescecne Czk_le 9 ceescen Czk 1 O,Czk 1 1 9 C2k_1 M ]

2 — 2 2
lpnm(t) = [lpo,o 1 LP0,1 5e lPo M- lpzk 1,M°" Lpzk 1,0’ Lpzk 1,1
R3] LIJ k -1,M ]
Theorem(2 3.9):

Let W2, (t) be second kind Chebyshev wavelets and suppose o > 0

k+3

then DYW2_(t) = % D* (U5 (2% t — n) = A®W2_(t), where A% is

(m+1) (m+1) operational matrix derivative of order a in the Caputo sense
and defined by,
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0 0 0
0 0 . 0
A= | Y2, W2~’0 B i V\.’;,l r i YVE,m x
s, W;+1 0., s ‘{V;+1 1r D=2 W.;+1,m -
L 2, Wi 0.r I Win 1 r I Winm ¢

(2.50)
p+1 22(841)=2pp(_1)N+P+2=(4+T) (r_1)1(p4+4)IT (r (x+{’——)
\/_ =0 (n+1-r)! 2r! T(r-a)(p+1-¥)! 28! T(r—a+£+1)

and Wn+1 o) r=

Proof :
Let Uz, (2% t - n) be shifted Chebyshev wavelets of second kind. Then
by substituting (1.6)and(1.7)in remark(1.36¢), we get

2r—1
Un(25 t—n) = it r (—1)m+aor 02— (kg 1

(m+1-r)! 2r!
also , we have that D*U; (2Kt-n)=0 n < [a]
and forn > [a] , we have
(n+r)! 2211

AT T* k — 1'1+1 n+l-r
D Un (2 t_n)_ I'( 1) (n+1-1r)! 2r!

— n+1 n+1-r (@+0)! 2277 (r-1)! ks r—o—1
I‘( 1) (n+1-1r)! 2r! I'(r-o) (2 t n)

D2kt - n) 1t

(2.51)
now, approximate (2XKt-n)™ %1 by (m+l) — term for shifted
chebyshev wavelets for second kind, we have
(Zk )r * 1_2 Odr 1,p p(2k - n) (2523-)
dr_l,p_; [ @%t-m)t Up (2%t-n) J@*t-n) - (2¥t-n)? dt

4 @p+1 2271 (CDPHIY 2 (o)t (1 " —x > k, r—a+l-2
) A ey J@2kt-n)—(2kt-n)2. (2°t-n) dt

p+1 226-1p (—1)P+1-¥ (p4o) F(r a+{’——)
_Zt’ 0 (p+1-0)! 28! T(r+f—a+1)
Therefore
(m+r)! 2271 (r—1)!

oY% k n+1 m n+1-r
D*U; (2¥t—n) =2 —or(=1) (m+1-1)! 2r! [(r-o)
S5 Wi ] U3 2F T

(2.52b)

dr_1p- U (2¥t-n)

(2.53)
k+3
DW= Zro[Z8 Wit p o] Un (2€t—n), thus
Dalpr%m(t)z[ ZIerl Wn+1 or, Zr 2 Wn+1 1,rs ?+21 Wn+1,m,r ] Lpr%m(t)
k+3
And, DAWZ, (t) = ; L (2%t-n)=[00,..,0 ] WZ,(t), n < [a]

(2.54)
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Example(2.3.9):
Consider the following multi-fractional order nonlinear differential
equation

7 5 1
D*u(x) + Dzu(x) + Dzu(x) + u3(x) = 6.772 xz + x° (2.55)
with initial condition
u(0) =u® ) =u®@0) =0 , u®)=6 (2.56)

with exact solution y(x) =x3> , m=4, k=0
by use(2.48a)and (2.48b),we get m = 0,1,2,3,4 and n =0

Woo(x) =2 = Up(x) = 2

;||N%I
Ty

Yo 1(x) =2 |=-Ui(x) = E(S x —4)
2 2
Po2(x) =2 — Us(x) = E(32 x? —32x+6)
2 2
Poz(x) =2 — Ui(x) =2 E(64X3—96X2+40X—4)
2 2
Pos(x) =2 - Us(x) =2 g(256 x*—512x3+336x*—-80x+5)
r 0 0 0 0 0
0 0 0 0 0
7 0 0 0 0 0
AZ= 0 0 0 0 0
4 4 4 4 4
ZWZOr zwgl,r ZWZ,Zr ZWZ31‘ ZWZ4r
r=2 r=2 r=2 r=2 r=2
[ 0 0 0 0 0 1
| 0 0 0 0 0 |
0 0 0 0 0
l 0 0 0 0 0 J
7.118 x 107 8.338 x 108 2.234 x 10'° 9.135 x 10*' 5.077 x 103
0 0 0 0 0

0 0 0 0 0
0 0 0 0

[ ]
| o |
er 2W3 0 r Zfzz W3 qr Zf:z W3 ar Zfzz W3 3 r Zr 2W3 4, rJ

Zr 2W4 0r Z§=2W§,1,r Z;L:zW;,z,r Z#zzwg,S,r Zr 2W3 4y

5
2

0 0 0
0 0 0 0
= 0 0 0 0 0

—1.977 x 106 —2.316 x 107 —6.206 x 108 —2.538 x 101°® —1.41 x 10*2
2.514 x 107 3.565 x 108 1.035x 10'° 4.468 x 10'*  2.581 x 1013

,————|
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D*u(x) = CTD*W2  (t) =

L9804.4054 Cy

(co €1 €2 C3 C4)2\/%|
lo144!

—_
_[;OOOO

6

(2.57a)
by using the first root x,. = % Urp1-2(X)

7
cT-Dz-(x) = —8.8147 x 101° -2 ¢, + 5.7287 x 1013 -2 ¢,
= 8.0891 x 103 ¢,
(2.57b)

5
cT-Dz-P(x) = —2.2463 x 10*2c; + 4.1125 x 10%3¢,
by substituting(2.57a),(b)and(c)in(2.55),we get
—2.2463 x 101%¢c5 + 1.2201 x 10'%c, + (1.5956 ¢ — 1.5956 ¢, —
5.5851 c,)3 =4.79 (2.58)
also, from(2.55),we get

2 _4\/%(:1"‘6\/%(:2_8\/%(:3"‘10\/%(:4:0 (259)
2 2 2

8 C1—32\/;C2+80\/;C3—160\/;C4—0 (2.60)

64\/7 c2—384f c3+1344\f c, =0 (2.61)

768[ c3—12288\f c,=6 (2.62)

from(2. 62)and(2 61),we have 768\[ c3 =12288 |- c,+ 6
C3 == 16 C4_ 128\/_

2
64\/7 —384j:c2 16c4 +1344\/;c4—o

c2 - 6144000 2, —3+1344
T[

2
—c2=6143x106j;c4+3

¢, = 95980 c, + % (2.63b)

and ,from (2.59),(2.60),we get

ﬁl:m
(@]
o

Alwn

(2.63a)

64

ﬁl:m
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2 2 3V 2 T
8 |= ¢, —32 |- (95980c4+i>+80 - (16c4+ vm )
Tt Tt 64+/2 T 1282
2
_ 160\/: cy =0
Tt
g |2 3071000 |2 ¢, — 22+ 1280 [% ¢, + 22 _ 160 | 0
e T4 6a ™ 4T 128 T
g |2 3070000 |2c, + 20 _ 89
e 4T 64 128
— 3070000 |2 ¢, + 122289 _ 2070000 |2 +3 112
= o 128 4 T 128

c, = 383800 c, + (2.63c)

2 3Vm
—c0—4 383800c4+— +6 Z (95980 ¢, + ——
T 64+/2
8 <16 )+10 2
— C —Cy =
T + 1282 m
5 |2 959210 |2 ¢, + 204 8
_— T2t 128

14«/%

—3.594 x 1013, % +1.2201 x 10%c, + [765257.73&:4 + O'Z;ﬁ -
1.5956 ¢, — 5.361 x 105¢, — O'Zj;ﬁ] = 4.79 (2.64)
by(2.64),we have
c, = 0 ,and from(2.63)(a), (b), (c) and (d), we get

14/ _7Ym _ 3ym _Am

0= oavz "1 T ez 12T ez '3 T T2evz
Then, the approxmate solution become,

x) = L x—4) + E(32 2_32x+6)
Y 128\/_ i 64\/_ et *

—(128x —192x2+80x—8) 40

128\/
192 80 8
—x*+

3.9
=2 Iy T3 S 24 x3 - —X——
128 8" 16 ' 2 27 132 128 128" 128
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2.3.5 The Operational Matrices of Fractional Derivative for
Chebyshev Wavelets of Third and Fourth Kinds,[29]:

The third and fourth kind Chebyshev wavelets W3, (t) and W1, (t) have
four argument , k,ne N ,mis the order of the polynomial V;, (t) or Wy, (t)
and t is the normalized time . They are defined explicitly on the interval

[0,1] as

k+1

272 .,
( —= Va(2"t-n)

7=
Wi =W Oz (0) = { teln o]
22 Wi (2kt- n) 22
\/E n
0 otherwise.
(2.65a)
with ,
m=0,1,...M, n=0,1,...,2K-1 (2.65b)
and, the weight function is:
k —(ok¢_
i@ t-m= [FEED g 2K e )= LD

2.3.6 Function Approximation for Chebyshev Wavelets of Third and
Fourth Kinds,[29]:

The function f(t) defined over [0,1] may be expanded in terms for
Chebyshev wavelets of third and fourth kinds respectively as follow,
f()=2nz0 Xm=0 cnm ¥am(t) fori=3,4 (2.66)
where, com = [, 00} f(t) . Win(D) dt
f(t) = 225" 2o Cam Phm()
since, C and W(t) are 2X(M + 1) matrices defined by
C=[ o0, Co1 s CoMs ------ Cok g seeemeeees Cox_ym ]’
lI"rllm(t) = [l'p(l)’o ) l.p(l),l y e ;k—l,M g es ;k—l,O ) ék—l,l genn ;k—l,M]T
2.4 The Relation Between Operational Matrices of Fractional

Derivative:

The proposed formulations which express the fractional derivative a>0
operational matrix of shifted third and fourth kind Chybeshev wavelets
DY3 (t), D2, () interms of W2, (t) and W2,_,(t) and first kind
Chebyshev wavelets D*Wg (t) interms of W2, (t) and W2,,_,(t).

2.4.1 New Relation Between Operational Matrices of Fractional
Derivative for W2 (t) and W3, (1):
From(2.48)(a)and(b), also by

UL () = \/% Uy, (1) (2.67a)
and, by(2.65)(a)and(b), also by
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Vi (t) = V (1) (2.67b)
From(1. 47b), we obtain
V(2K t- n)=U,(2¥t- n)-U,_,(2¥t- n) (2.68)

with multiplication(2.68) by\E , yield

\/% Vi, (2Kt - n) =\/% U, (2Kt - n) —\/% Upy_1 (2Kt - n)

By(2.67)(a)and(b) , we get
V2V (25 t - n)=Uf (2% t - n)-Ufy_, (25t - n) (2.69)

k+3

with multiplication(2.69) byﬁ , We have

k+3 k+3 k+3
272 272 . 272,
V2 = Vi (2¥t-n) === UL(2"t-n)-"= Un(2t-n)
(2.70)
2V2 W3in(t) = Wi (0) - Wam-1 (D)
Theorem(2.4.10) :
Let W3, (t) be third kind Chebyshev vector and suppose o > 0, then
k+3
22 * * —_
DY Win(t) = oA DY(Up (25 t- n)-U_4 (2K t- n)) = A W3 (1)

where A% is the (m+1) (m+1) operational matrix derivative of order a in
the Caputo sense and defined as follow

A=
i 0 0 0
0 0 0
2 ~ 2 ~ 2 ~ 2 owy 2 ~ 2 ~
(Zr:Z Woor— Zr:Z W20 ,r) (Zrzz Woir — r=2 "z, ,r) ree (Zr:Z Womr — Zr:Z W7 m ,r)
1 : . :
22,

+1_, ~ ~
(2? 2Wnt1,0r — 2?:2 Wi 0,r)

~ m ~
R Wi 1 = 2D g :

r=2 Wn+im,r — Z;n=2 Wmn,m ,r)

(er"n=2 WI:’I 0,r Z;n=m Wl’T‘l ,0 ,r) (Zm W _ Z]‘fl_z W:n ) (Z?LZ W; m,r Z;n=2 W; ,m ,r)
r=2"Vm,lr - e

(2.71)
where,

g 220+D72(_)P+mA2=(EDr p(r— 1)1 (m+1)!(p+)! T (r—a+£-3)
(m+1-)! 2riT(r—o).(p+1-4)! 22! T(r+f—a+1)

Wm+1 P, r— Z[ 0

Wm,p,r

R 220402y p(— )Pt 1)1 (m— 14+ 1) (p+ O)! T (r—at £~ 7)
_\/_ﬁt,_o (m-—0)!2r Tr—a).(p+1-4)! 28! T(r+£—a+1)
Proof :
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from theorem(2.1.7),we have that
Dau;‘n(zk t-n)

mtl m P r.£(—1)PHM 2=+ — 1)1 (m +1)! (p + &)! F(r—a+£’—%)
Z ZZ 22(r+£)-2
m+1-!'2rl Tr—a).(p+1-O)! 22! Tr+¢f—a+1)

r=2 p=0¥=0

(2.72a)
and, D"‘U;‘rl 1(Zkt— n)

m+1—(+r 1
m, 3 Ozpﬂ 22(r+0)- , TA(= P (e 1)1 (m—-141)!(p+0)! T(r—ac+£—3)

(m-0)! 2r! T(r—a).(p+1-4)! 2L'T(r+f—a+1)

(2.72b)
from(2.72)(a)and(b), we get
DYU;, (25 t- n) — D*U;,_4 (25 t- n)
= (Z{)n=0 oyt 2 Wmt1 P, r) Un (Zkt - n) -
(Z?:O Z{‘n=2 Wr~n P ,r)U;kn (Zkt - n)
(2.73)

by(2.73), we obtain

k+3
3 - 1 ~ * k
Datpnm(t) 2\/—\/— m [ Ir'mé Wm+1 pr Ir‘n=2 Wm,p,r] Um (2 t- n) :
forn > [a], we have
1 ~
Daqu?m(t): WE[ (Z?IJEI Wm+1 o,r Z;n 2Wnm o ,r)' (er‘nzl Wm+1 1r

11}1=2Wr;1,1,r)a--"( {‘n-;lwm+1mr - {‘n=2Wm,m,r ]lpr?m(t)

(2.74)

k+3

and, D“tpgm(t)— — DUy, (Zkt—n) DYU;,_4 (2% t- n))

[0,0,...,0 ] W3, (1) n > [af
(2.75)
2.4.2 New Relation between Operational Matrices of Fractional

Derivative for W2, (t) and W (1):
from(2. 48)(a)and(b) also by(2.67a) and, by(2.65a) with

2«/’

Wi () = =Wn () (2.76)
by(1.47c),we obtam
Wy (2%t — n) = Uy (2t — n) + Up4 (2%t — n) (2.77)

with multiplication(2.77)by\E , yield

m(2¥t—n) = \/% Un(2¥t—n) + Up—y (25t — n)

from(2.67a)and(2.76),we get
V2 W, (2%t — n) = U5 (2%t — n) + U, (2¥t — n) (2.78)
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k+3

with multiplication(2.78) by% we have
k+3 k+3 k+3
V2 - % Wi (2Kt —n) = sz Usy (25t —n) + ZT; Usa_1(2%t — n)
k+1 (279)
22 - 2? Wi (2K = n) = W2, (1) — W24 (D)
22 Wim (D) = Yin (D) — LPr%m—l(t)

Theorem (2.4.11):

Let @, (t) be fourth kind Chebyshev vector and suppose o > 0. Then
K+3

2 2 Da(
2v2 - /m
= AW (D)

where A% is the (m+1) (m+1) operational matrix derivative of order a in
the Caputo sense and defined as follow:

DY (1) = U (2Kt —n) + Up,_ (2Kt — n))

AC
0 0 0
0 0 0
2 2 2 2 2 2
O Wigs= D Wigs)  (Q Wia, Z Wi () Wime— Y Wim)
. =2 =2 r= =2 r=2 =2
" 2V2| ot n+l +1
(I]Z:Wn+10r szOF) (an““ Zwm“) ' (nzwn+1mr Zwmmr)
_(ZWmOr ZWmOr) (Z:wm]Lr Zwmlr) (zwr},m,r—zwﬁ,m,r) |
(2.80)
where,

N 4 1 TEEDPIZED (o) (mar)!(p+2)! 220472 T(r—oke—2)

Wm+1,p,r= 7 &=0 (m+1-1)! 2r! T(r—).(p+1—#)! 28! T(r+f—a+1)
pt1 22EHO7Zr (- )PHMFI=(D) (r_ 1) (m—1+41)!(p+&)! T(r—a+£—7)

Vi ~44=0 (m—1)! 2r'T(r—a).(p+1—#)! 28! T(r+f—a+1) (2.81)
2.4.3 New Relation Between Operational Matrices of Fractional
Derivative for W2, (t) , %3, (t) and ¥z, (t):
from(2.48)(a)and(b), also by(2.67a)
and, by(2.65)(a),(b) with(2.67b),(2.76),and (1.47a), we get
2Up (2%t — n) = V(2% — n) + W, (25t — n)
with multiplication(1.47a)by %ﬁ , we obtain

WI;I p.r —

(2.82)
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V2 2 U (250 1) = U (25— ) + W (254~ )
from(2.67)(a),(b),we have

k+3 k+3 k+3
V2 .TU;}I(Zkt — n) = —Vr’;l(Zkt — n) + 2—ZWr’;l(Zkt — n)
k+3 k+1 k+1
f W m(2¥t—n) = —Vr;(zkt —n)+ —wr;(zkt —n) (2.83)

Elpr%m (t) = LIJr?m (t) + nm(t)
Theorem (2.4.12):
Let W2, (0),¥3,(Dand W2, (t) are shifted second, third and fourth
kind Chebyshev vector respectively and suppose a > 0, Then:
Datpr%m(t) = Aalpr%m(t)
K+1
272
2V2 -V
== (A% Q3m (D) + AW, (D) (2.84)
Where A% is the (m + 1)(m + 1) operational Matrix derivative of order a
in the Caputo derivative.
2.4.4 New Relation between Operational Matrices of Fractional
Derivative for W2 (t) and W2, (D):
from(2.32)(a)and(b), also by(2.48a),(2.67a),and by(1.44),we get
2 Ty(2¥t—n) =Up(2% —n) + Up—,(2%t—n) m=2,3,--

D (V;;(Zkt —n) + Wy (2%t - n))

(2.85)

with multiplication(2.85) by\/% , We get

2 \/% T (2t - n) = \/% Up (25t 1) — \/% Upa(25 — 1)

from(2.32b)and(2.67a), we get

2 (2%t —n) = U5 (2% — n) + U5, _, (2%t — n) (2.86)

k+3
with multiplication(2.86) by T , We get
k+3 k+3 k+3
2 f Tm(2t—n) = —= Uy (2"t —n) + 22 U, (25t —n)

(2.87)

. _{1 =0
m_\/i m=*0

V2

=Wl (D) =¥ () - ¥2,_,(), m=2,3,

Trﬁeorem (2.4.13):
Let W (t) be fourth kind Chebyshev vector and suppose a > 0, then
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D*WL (D) =

k+3

o

= A*WinL ()
where A% is the (m 4+ 1)(m + 1) operational Matrix derivative of order o
in the Caputo sense and defined as follow:

D¢ (U;“n(Zkt — n) + U;“n_l(Zkt — n))
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Aa
0 0 0
0 0 0
2 2 2 2 2 2
(z WZN,O r z W;,O,r) (z W;,l T z W; 1 r) .. (Z W;,m,r - Z W;,m ,r)
r=2 r=2 r=2 r=2 r=2 r=2
Cn
B 4\/5 n+1 n—1 ntl -l n+1 n-1
(Z W;+1,0 r Z W:—l,o,r) (Z n+1 r ™ Z :—1,1,r) (Z Wr:+1,m r W: 1,m r)
r=2 r=2 r=2 r=2 r=[oc]+1
(Zwmor_z mO,r) (ZW;‘I'F—sz‘LF) Z Whom r Zwmmr)
r=2 r=2 r=2 r=2
(2.88)
where,
N 4 qpr1 220D rp(— P2 (rm 1)1 (M) (p+&) T (r— o+ )
Wmn+1,p 1= 7z =0 (m+1-1)! 2r! T(r—).(p+1—¢)! 28! T(r+f—a+1)
(2.89a)
W;—Z p.r
4 X5 220+0-2p p(—)PHM-C)(r — 1) (m—2+1)! (p+ £)! T (r —at - %)
_ﬁﬁ_o m—1-D)! 200 Tr—).(p+1—O! 28/ Tr+f—a+1)
(2.89b)
Proof:
from(2.53),we have
D“Ufn(zkt- n)=
Zm+1 m g+l 220 +0=2p (- )PHMF2=(0) (r— 1)1 (m+1)! (p+O!T (r—ac+£—3)
=0 (m+1-0)! 2rT(r—a).(p+1—£)! 22! T(r+f—oa+1)
(2.90a)




and, D“Ufn_z(zkt— n) =
moyM gt 22(+D=2p p(~1)PHM=(4+D) (r— 1)1 (m—-2+1)!(p+&)! T(r—a+£—7)
2 02'? 0 (m—1-0)! 2r! T(r-o).(p+1-4)! 2! T(r+f—oa+1)

(2.90Db)
from(2.90)(a)and(b),we get
DU, (25 t- n) — D*U;,_,(25t- n)
= (Zgl= m+1Wm+1 P, r) U:’n(zkt - n) - (Zp OZ Wm 1,p r)U:n(Zkt - 1’1)
Thus,

k+3

1 _Cm2 2 *
Datpﬁm(t)—wiﬁ fon:o[ Wi por— 2= 2 W1 P r] Un (Zkt —
).

Then

k+3
Cm2 2
Datplm(t)_ 4\/—\/—[ (ZinJEl Wm+1 or —

m+1
rZWm 10r)( rZWm+11r_

Wm—l,l,r) (Z{‘nzlwm+1mr - 1r*n21Wm 1,m,r ]

Piim(t)

(2.91)

- sz1(-;-3
and, D*Ws . (t) =

7= (DU (2t - n) = D*UL, 4 (2 t- n))
0,0,....0 | ¥Y2,(t) n<][a]

(2.92)

4\/—[

CHAPTER THREE
Fractional Operational Matrices of
Fractional Derivative for Solving
(MENDE) With MIXED Boundary Conditions



2.1 Introduction:

3.1 Introduction:
The multi-fractional order nonlinear differential equation (MFNDE)

arise in modeling processes in applied sciences, as in physics,
engineering, chemistry[18]. Other sciences can be described very
successfully by models using mathematical tools from fractional calculus,
and concepts of fractional polynomials and fractional operational
matrices,[11],[17],[19],[33],[50].

The fractional operational matrices are usually difficult to be
formulated analytically, so, it is required to obtain an efficient
approximate solution of (MFNDE).

This chapter consists mainly of three sections. In section (3.2), which is
termed as shifted first, third and fourth kinds of fractional order
chebyshev polynomials. In section (3.3), the operational matrix of
fractional derivative for shifted first, third and fourth kinds chebyshev
polynomials is presented. In section (3.4), the couple fractional order for
shifted chebyshev polynomials.

The same as [17, 33], we present some kinds of fractional order
chebyshev polynomials.
3.2 Some Kinds of Fractional Order Chebyshev polynomials:

We introduce the fractional order chebyshev polynomials of first, third
and fourth kinds by changing the variable x = x*which ¢ > 0 in (1.11),
(1.41b)and(1.42b)as follows:

1. T (x%) as T%(x).
2. Vi(x%)as VE(x).
3. W (x%) as W.%(x).

From the recurrence relation of the shifted Chebyshev polynomials of
all above kinds, we can be obtain with the following recurrence formula :

LT (0)=2x*T%x)—-T* (x), n=1,2,- (3.1)
where T¢(x) =1, T (x) = 2x“ -1
iV () =22x*-1DV%x) -V (x), n=2,3,- (3.2)

where V¥ (x) =1, V¥(x) = 4x* -3
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il W%, (x) =22 x* - DWE(x) - W*,(x), n=1,2,- (3.3
where W& (x) =1, W (x) = 2x* + 1

Lemma(3.2.1):

1. T%(x) are orthogonal function with respect to the weight function

Fa(X) = —— d we h
wl'a(x)—ﬁ,an we nave

14g — * 0 n#m
fo T‘I’l (x) ' Tm(x) ' wl,a(x) dx = ? n=m (3'4)
a
(2 if i=0
where, ci—{l if i>1

2. V%(x) are orthogonal with respect to the weight function
w3 o(x) = x*1/(x~* — 1)1 ,and we have

s .
1 - — if n=m
VE(x) - VA (x) - w4 (x)dx =42« 3.5
fO n() m() 3,a() {O if n+m ( )
3. W.%(x) are orthogonal with respect to the weight function

wso(x) =x*"1Wx~¥—1 , and we have

L _ . 0 if n+m
Jy W) Wit (x) - i () dx = {2_ f n=m (36)

Proof:

1.Bytaking t = x% and dt = ax® 1dx , Substituting these valued in
0 if n+m

[T - T (o) - wi(Ddt = {ne;

o°n m 1 T |= if n=m

4
we get,
e o . . - 0 if n#m
Jo TR(x®) - T (x%) - w1 o(x) -ax*tdx = % if n=m (3.7)
15y = X1 0 if n#m
“fy TEE T Trmm S i e
1mg 0 . 0 if n#+m
fo Tn (X) ’ Tm(x) ’ wl,a(x) dx = % if n=m (38)
2. fortaking t = x% and dt = ax* 1dx , substituting these valued in
1, ) . 0 n#+m
‘a

we obtain,
1o e w . - 0 if n+m
o D i) wia () e e =g e @)
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jl -
Ve (x) - V2 (x) - 74 2o _
> if n=m

0 if n#m
x® 1dx = .
{E if n=m

a 0 if n+m
x®” 1dx—{

af Ve (x) - V% (x) -

) 0 if n+m
a a a— a _ 1 =

jovn(x) ) - x ot (e = 1) dx—{g if n=m
Then

- . ) 0 if n+m
150 i ax= (L 12

3. now for taking ¢t = x* and dt = ax% 1dx , substituting these valued
in

1 0 if n#m
fown(t)-wm(t)- w4<t)dt={g i onem
we get,
1o o . . vt 0 if n¥+m
Jo Wik (x®) - Wi (x*) » w0} q(x) -ax®'dx = % if n=m (3.10)
11_ B x%a ) 0 if nEm
WEx) Wi(x) ——Vx ¢ —1-ax* " dx ={T | .
0 x%“ > if n=m
1 0 if nm
af We(x) - We(x) - x¥1-vVx—*—1dx={m
0 5 if n=m
1= — . 0 if n+m
fo Wn (X) ' Wm (X) ' w4,a(x) dx = % if n=m

lemma(3.2.2):
1)The fractional-order first kind Chebyshev function T,%(x), has precisely
n zeros in the form:

1
1+COS—(m_%)n ¢
tm: fn m=1,2,---,n. (311)
2)The fractional-order third kind Chebyshev function V,*(x), has
precisely n zeros in the form:
1

t, = ———* m=1,2,-,n. (3.12)
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3)The fractional-order forth kind Chebyshev function W,%(x),has
precisely n zeros in the form:
1

1+cos %] E
tym = % m=1,2,..,n. (3.13)
Proof:
1)The shifted Chebyshev polynomial of first kind T, (x) has n zeros

14cos —(m;?)ﬂf]
Xm = 5 m=1,2,-,n.
so, T, (x) can be written as
Ta(x) = (x —x1)(x —xz) - (x — xp) (3.14a)
changing of variable x = t% in(3.14a),yields
Ti() = (¢% —x) (% — xz) -+ (£ — xp) (3.14b)
so, the zeros of T%(t) are,
tym = (xp)e m=1,2,-,n (3.15)
2)The shifted third kind Chebyshev polynomial 1}, (x) has n zeros

1+C057(m1§1)n
Xy = L m:1,2,"',n.

2

so, V" (x) can be written as
Vi (x) = (o —x1) (x = x) -+ (x — xp) (3.16a)
changing of variable x = t% in(3.16a),yields
V) = (% —x) (% — xp) =+ (% — xp) (3.16b)
so, the zeros of I7%(¢t) are
tm = () m=1,2,-,n (3.17)

3)The shifted fourth kind Chebyshev polynomial W, (x) has n zeros:
Then W,/ (x) can be written as

Wy (x) = (x —x)(x — x2) -+ (x — %) (3.18a)
changing of variable x = t% in (3.18a),yields
Wi () = (% = x) (6% — x5) - (% — xp) (3.18b)
so, the zeros of W% (t) are , t,,, = (x,,,) m=1,2,-,n.
(3.19)
Remark(3.2.3):

a- For any function f € Lﬁval we write
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(F Thwa,

f=YrofiTd(x), with fi, =

7,

(3.20)
where, f, is the expansion coefficients associated with the family {T,%}.
b- For any function f € L‘ZA,M3 we write

o _ i
f=2keo filVie (x),  with f, = 7 :

where, f; is the expansion coefficients assouated with the family {V,}.
c- For any function f € L‘2~a4 we write

(o's] 7 . (f k )Wa
f =Yk fiW¢' (x), with f, = W
Wy Way

where, f;, are the expansion coefficients associated with the family {iW,*}.
3.3 The Operational Matrix of Fractional Derivative:
Let,

- T () = {Tg" (), T (), -, T (0}
- V00 = V5" (), V¥ o), -+, Uy (0}
Hi- W, () = (W' (o), Wi (x), -+, Wif ()}

(3.21)

(3.22)

and Xa(X) — {1’ xa, Xza, e xNa, }T

we obtain,
a- T,(x)=FVX,. (3.23)
or TF) =%\ fPxI  i=0,1,-,N.
b- T, (x)= F<3>X (3.24)
or VE) =¥, f0x  i=0,1,,N.
c-  W,(x)=F@%X,. (3.25)
or W) =¥, fPx/%  i=0,1,,N.

The fractional derivative of order A of the vector T, (x), V,(x) and W, (x)
can be expressed by,

1. DT, (x) = A*T,(x) (3.26)
2. DM(x) =AM, (x) (3.27)
3. DAWL(x) = A (x) (3.28)

where A% is the (n+ 1)(n+ 1) operational matrix of fractional
derivative.

lemma (3.3.3),[33] :
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the largest integer such that ka < [1] for a €N,

Let, k = 0 fora ¢ N and a < [1]

(3.29%)
Then, we have DX, (x) = A* X2 (x)
where A% is the following (n + 1)(n + 1) diagonal matrix
0 - 0 0 -

B F((k+i)a+1)
A= 0 I((k+Da+1-1) 0
T : F(Na+1)
0 - 0 I(Na+1-21)

(3.29b)
XA =0, 0, xktDa=2  (k+)a-2 m,xNa—A]T
lemma (3.3.4),[33]:
we have, X2 (x) = BU#(x)
where B = (b;;) is the following (n + 1)(n + 1) matrix,
b

ij
( 0 l =011;"';k
i =0,1,,N

j-1 A 5 A 7
ﬁzf r(i-g+i+3) r(i-g+i+3) {i=k+1,k+z,---,1v
T L) A j=01,-,N
T B r(i-g+1+3) T(i-+1+4)
Theorem (3.3.13):
a- We have, X2 (x) = DT*(x)

where, G = (g;;) is the following (n + 1)(n + 1) matrix .

i=01k
0 {1 — 0'1’ e, N

9i =) , o L TCu+O-A+hHrd (i=k+1,k+2,-,N
e 40 Jje r(3G+0)-~+1) { j=01--N

(3.30)

b- We have, X2(x) = H - V*(x)

where, H = (h;;) is the following (n + 1)(n + 1) matrix .

i=0,1,--,k
hij = —4 o r(i+1-5-2+7)  (i=k+1,k+2,-,N
\/_E {,zoﬁ-{;.m { j= 0,1--,N
(3.31)
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c- We have, X2(x) = R - W&(x)

where, R = (r;;) is the following (n + 1)(n + 1) matrix .

[ 0 i=0;1;“.lk
-=0’1’...,N
AN PR f r(i+i=5+3) {i=k+1’k+2’m'N
L\/E ¢=07it (+l—§+2) j:O,l,-.-,N
(3.32)

Proof:
a- Obviously, for i =0,1,2,---,k , we have b;; = 0, now for i > k

approximate x‘*=* by terms of fractional-order Chebyshev series,

we get
xwz = ;V 09ij " Tia(x) (333)
by(3. 23) We get
4 1
gij — TC(CZ 0 la -4 Ta(X) \/TTl dx
_4a 1 1. j
= TC—CL 0 le Of:lf \/Tl dx
where, ¢; = {i i ; (1)
4a 1 g2 1
= e Tbmo fie Jy X1TH x4 e d

_ra §J 1 i+6)-1-1, 1
= e Ze=ofje Jy x*0H0 e
1 . 1
2 \—=la(@+)—21-1] Z—1
= ijt’ fo ( - z)w U——— du
it 1tu a(1+u?)*za
A
S ANy POl g Ol
Tc; ¢=0Jjt" (1+u2)2(1+£) -A+1
1
0%} (t)Z(H[) Za 2
Z fie J, - dt
f 0/] (1+t)2(l+£)
1 1
=7T_CL gzof}g'B(E(l+€)_z+E ,E) (334)
_ 2 ‘, G+ —32+)TG)
Tc; =07J

FG(H‘?)_%H)

b- Obviously, for i =0,1,2,---,k , we have h;; =0, now for i > k
approximate x'*=* by (N+1) terms of fractional-order
Chebyshev series, we get

xia=t = PN Chy - VE () (3.35)
by(3. 24) we get
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2-a 1ia—/1 a a—1 - -1
h--=T b -VE(x) - x \/(x“—l) dx

9)

0
2a 1 jo— j _ — —
=— [ X o fie x* T (¥ = 171 dx
=2-7a_ é:ofi{’ folxia—l.xla .xa—l\/(x—a — 1)1 dx

— 2'?0‘. 1;:0 fi{’ fol xa(i+l+1)—/1—1 . \/(x—a _ 1)_1 dx
2'x

, 1 ]
- é:() f;:w” fo G(x, L ‘gr a, A)

Vs
La(i+l+1)—2-1
_2a 12] f; foo ( u? )E 2uf(1+u)—2ut
T a&t=07 Jo |\1402 (1+u?)?
4o - (uz)(i+l+1)—%—é+2
=;'Z£=0fi{’f0 ) 2 1 -du
(1422) DG +2
o A1,s
2 o f J-oo )z =tz gt
n “=0Jit Jo (1+6)+D 21,3
2 «j . A1 7 1
=—- 2. Bl(l+)—=—=4+- ,— =
T £=0ﬂ{) i+0D a a + 2’ 2
. A1 7
_ Ay r((+D-54+)

T Vm Se=0 i{)'r((i+1)—§—1+3)

a

du

(3.36)

(3.37)

c- Obviously, fori =0,1,2,---,k , we have r;; = 0, now for some i >
k approximate x‘*~* by (N +1) terms of fractional-order

Chebyshev series, we get:

xtet = P o W (x)
by(3.25),we have
ry =22 [ A W) x AT =T dx

=X lyia-d. gl g, x@ 1@ — 1 dx

T Y0
2a wj 1 ~
S e SN
2a wj 1 L _
=22 Yoo fie Jo x@EHDTATL =@ T dx
2:a j 1 i
= — " L=o fo G(x,i,f,a, 1) dx
2051 e[ ()
— . U -
T Z{):O fie foo[ 1+u? ] a \1+u?
—4 j foo( 1 )(i+l+1)—%—%+%—1 u2 d
= — . . - du
T £=0 fie 0 \1+u? (1+u?)?
_ Tty 0 u?
= L=0 fif fo A du
n (1+u2)1+l_5+2
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_ty et 1y

= = g:oﬁf fo (1+t)i+l—%+2 > t 2 dt

_ "2\ o t2 )

=— Yoo fie ], PR dt (3.41)
_ =2 @) 3. A1

== T fuB (S ,:+z—;+5)

_ __1 .\ f F(i”_?’%)

~Vm =0 lf'l‘(i+l—%+2) '

Theorem (3.3.14) :

Let T,(x), V,(x) and W,(x) be fractional shifted chebyshev vectors
respectively, D* is the (n + 1)(n + 1)operational matrix of fractional
derivative of order A > 0 in Caputo sense and a € N, or a > [A] when
a & N then:

a- D* = FOAAG T, (x) for fractional order shifted Chebyshev
polynomial of first kind (3.42)

b- D* = F®A*H ,(x) for fractional order shifted Chebyshev
polynomial of third kind (3.43)

c- DA = F®OA*R W, (x) for fractional order shifted Chebyshev
polynomial of fourth kind (3.44)

where, G =(g;;), H=(h;)and R=(r;), are given in
theorem(3.3.13), and A% is given in equation(3.29b)
Proof:

a- Application remark(1.4.4)(i), we can write Ath order fractional

derivative of T, (x) as

DT, (x) = F®ODAX,(x) = FYAY X2 (x)
=~ FOD,-G.T,(x) =DW - T, (x)
b, ¢ have the same prove in (a).
Example (3.3.10):
Consider the following multi-fractional order nonlinear differential
equation,

D3 u(x) + D% u(x) + u?(x) = x* (3.45)
with mixed boundary conditions,
u(0) =0, u®M) =2, u®P@) =2 (3.46)

To find the approximate solution with m = 3 , a = 2 the order of
T, (x) polynomial, such that exact solution is y(x) = x?2.
By using equation(3.30) and lemma(3.3.3)with equation(3.42),we get

5 _5 _
Dz = FMW Az - G.T,(x) (3.47)
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also, from(3.23), we have
To(x) = F(l)Xz

1 1 0 0 0 1

2x% —1 _ [—1 2 0 0 ] x?

8x2% —8x% + 1 1 1 -8 8 0 ||x*
32x3% — 48x2%% 4+ 18x% — 1] -1 18 —48 324|x°

1 -8 8 0
-1 18 —48 32
from(3.30), we have

0 0 0 0
G=[ 0 0 0 0 ‘ (3.48b)

1 0 0 0
p(l)ZI—l 2 0 0 (3.48a)

1.383 0.721 0.0088 —0.01
1.052 0.708 0.182 —0.0017

from(3.29b), N=3,k=1,a =2and 1 = g , we have

[O 0 0 0 1
[0 0 0 0 | [0 O 0 0
E;_l I((k+1)a+1) 0 [_lo o 0 0
10 0 T(ktDa+1-2) =10 0 18.054 0
[0 0 0 r(Na+1) J 0 0 0 619
F'(Na+1-21)
(3.48¢)
by substituting(3.48)(a),(b)and(c) in (3.47), we get
5 5 _
Dz = FW A2+ G.T,(x) =
0 0 0
0 0 0 2x -1
199.7501 351.6932 478.7938 590 2957 8x* —8x2 + 1
8652888 1716.7250  2483.2904 3190.9273 1 [32x® — 48x* + 18x% — 1
(3.49)
by using the first root of x* = — of the polynomial 7,7, _; (x),
substituting this root in(3.45), We get
—143.2792 C, — 1862.4595 C5 + (Cy — C,)? = 0.25 (3.50)
from(3.46), we obtain
u(O) = CO - Cl + CZ - C3 == 0 (3.51&)
uM(1)=4C, +16C, +36C; =2 (3.51b)
u®) (1) = 4C, — 80 C, — 444C; = 2 (3.51c)

from(3.50),(3.51)(a),(b)and(c), we obtain
C, = 0.5000 ,C, =0.5000 ,C,=C3=0.
Then, the approximate solution is
y(x) = 0.5000 + 0.5000(2x% — 1) + 0
= 0.5000 + x2 —0.5000 = x?

Example(3.3.11):

Consider the following multi-fractional order nonlinear differential
equation,
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D*u(x) + Dru(x) + u® (x) = x° (3.52)
with mixed boundary conditions,
u@=0,uPD)=3,uPD =6, uBA) =6 (3.53)

To find the approximate solution with m = 4 , a = 3 the order of
fractional shifted Chebyshev polynomial of third kind such that the exact
solution is y(x) = x3.

By using equation(3.31) and lemma(3.3.3)with equation(3.43), we have

7 7 _
Dz = F® A2 H.V;(x) (3.54)
also, from(3.24), we get
7, (x) = FOX,
[ 1 1 [ 1 0 0 0 0 ][ 17
I 4x" -3 | | -3 =+ 0 0 0|Ix3l
| 16 2% — 20x* + 5 |=| 5 —20 16 0 0 ||x6|
l 64 x** — 112 x** + 56x* — 7 J | =7 56 -—112 64 0 Jl < |
256 x** — 576 x> + 432 x** — 120x“ + 9 9 -—120 432 576 256 lxlzJ
- 10 0 0 q
-3 4 0 0 0 |
F=| 5 =20 16 0 0 | (3.55a)
-7 56 —-112 64 0
L9 —120 432 576 256
by(3.31), we obtain
i 0 0 0 0 0 1
0 0 0 0 0 I
H=| -4074 -6.403 -10.024 —13.999 -18 | (3.55b)
—4.656 —6.726 —10.112 -14.005 —18 Jl
L —-5.174 -7.055 -10.239 -14.031 ; —18.001
from(3.29b), N=4, k=1, a =3 ,and A = 5+ e get
r0 0 0 0 0 1
0 0 0 0 0
0 r((k+1)a+1) o 0 0 0 0 0
-7 r((k+1)a+1-2) 0 0 0 0 0
Az= 0 0 7705041 0 0
_(Cer2arr) 0 0 0 0 1261 0
0 r((er2)ar1-2) 0 0 0 0 4015
r(Na+1)
0 r(Na+1-2)
(3.55c¢)
by substituting(3.55)(a),(b)and(c)in(3.54), we get
7 _7 -
Dz = F® Az H.V;(x)=
0 0 0 0 0 1
0 0 0 0 0 4x3-3
—50224.5392 —107636.3407 —171421.7521 —241001.3544 315931.3371].[ 16 x® —20x3 +5
—24186.0492 —39865.9347 —48861.4308 —52403.8310 —51097.9840 64 x°—112 x®+56x%—7
—3.2922x 10° —6.8854 x 10° —1.0755x 107 —1.4883 x 107 —1.9253 x 107 256 x'2 —576 x?+432 x®—120x%+9

(3.56)
from using the first root of x* = % of the polynomial V., _,(x),
substituting this root in(3.52), we get
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125956.5914c, + 163874.1185¢3 + 23052154.51¢, +

(co — ¢, — ¢3)3=0.421875 (3.57)
from(3.53), we obtain

co—3ci+5¢c,—7¢c3+9¢c, =0 (3.58a)
12¢;+36¢c, +72¢c3+120c, =3 (3.58b)
24 c; +360c, + 1584 ¢c; +4560¢c, =6 (3.58¢)
24 c; +1800c, + 19152 ¢c3 +98736¢c, =6 (3.58d)

by(3.57),(3.58)(a),(b),(c)and(d), we get
co = 0.7500,c; = 0.2500 ,c, =c3=¢c, =0.
Then, the approximate solution is
y(x) = 0.7500 + 0.2500(4 x3 —3) + 0
= 0.7500 + x3 — 0.7500

=x3 .
Table (3.2)

Approximate | Approximate | Approximate Exact

X solution with | solution with | solution with solution
a=15 a=25 a=3

0.1 -0.0002452 0.013 0.001 0.001
0.2 0.002415 0.032 0.008 0.008
0.3 0.014 0.073 0.027 0.027
0.4 0.04 0.138 0.064 0.064
0.5 0.086 0.232 0.125 0.125
0.6 0.159 0.354 0.216 0.216
0.7 0.266 0.507 0.343 0.343
0.8 0.414 0.692 0.512 0.512
0.9 0.609 0.913 0.729 0.729

Example(3.3.12):
Consider the following multi-fractional order nonlinear differential
equation,

D>u(x) + Dgu(x) + u*(x) = x16 (3.59)

with mixed boundary condition,
w0 =0, uVD) =4, u®@PD) =12, u®Q) =24, u®(0) = 24

(3.60)
To find the approximate solution with m =5, a = 4 the order of
fractional shifted Chebyshev of fourth kind such that the exact solution is
(x) = x*.
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By using equation (3.32)and lemma(3.3.3)with equation(3.44), we obtain

9 _9 -
Dz = F® Az - R.W,(x) (3.61)
by(3.25), we obtain
W, (x) = F(4)X4

1

0 0 0 1
2x*+1 | 1 2 0 0 8 8 ”x‘*]
8x2* -3 =| -3 0 8 0 0 0 |[®
32x3% —16x%—14x%+5 5 -14 -16 32 0 0 ||x?
128 x** — 128 x3% — 32 x2% + 48 x% — 7 [ —7 48 —32 —128 128 0 ||xt|
512 x5 — 768 2% + 96 x% + 272 %@ — 1102¢+9) L 9 —110 272 96 768 s12lly20]
1 0 0 0 0 0
[ 1 2 0 0 0 0 ]
@_| -3 0 8 0 0 0
Rl 0 e % 0 0 | (3.62a)
| —7 48 —32 —128 128 0 |
l 9 —110 272 96 —768 512J
from(3.32), we have
[ 0 0 0 0 0 0 ]
0 0 0 0 0 0 |
po| —0281 —0549 0.184 —0.03 0.016  —0.0098 |
| —0.134 —-0.299 -0.053 0.035 —0.0022 0.00070 |
l —0.082 —0.196 —0.092 0.0035  0.0077  —0.0002 J
—0.057 —-0.142 -0.094 —0.019 0.0046 0.0018
(3.62h)
9
from(3.29b), N=5, k=1, a =4 ,and A = 5+ we get
o
- 0 0
0 0 0 0
0 0 0 0 0 0
0 0 pr((k+1)a+1) 0 0 0
0 0 r((k+2 1
= 0 0 F((k +Da+1- /1) (( t2at ) F((k +3)a + 1) 0
0 0 0 M((k+2a+1-2)  p((k+3a+1-1)
0 0 0 0 I(Na+ 1)
0 0 0 _—
I(Na+1-2)
0 0 0 0 0 0
0 o 0o 0 8 8 |
|0 0 344x10 0
10 0 0 3.413 x 10* 0 0 (3'62C)
00 0 0 1.529 x 105 0
00 0 0 0 4688 x 10°
by substituting(3.62)(a),(b)and(c)in(3.61), we obtain
9 ) -
Dz = FW A2 -R.W,(x) =
0 0 0 0 0 0
0 0 0 0 0 0
— 7.792 x 103 —1.522 x 10* 5.102 x 103 —831.84 443.648 —271.734
—1.308 x 10° —2.961 x 10° —6.809 x 10* 3.989 x 10* —3.29 x 103 1.308 x 103}
—9.883 x 10° —2.469 x 10° —1.589 x 10° —8.108 x 10* 1.585 x 10° —5.885 x 102
l —4.756 x 10° —1.257 x 107 —1.176 x 107 —4.885 x 10° 2.078 x 10° 4,486 X 10SJ
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[ 1

| 2x*+1
| 8x8—3
| 32x2—16x8—14x*+5
|

N—

128 x%6 —128x'2 —32x% +48x* -7
512 x2° — 768 x'¢ + 96 x*2 + 272 x8 — 110 x* + 9J

(3.63)
from using the first root of x%* = % of the polynomial W7/, ,_;(x),

substituting this root in(3.59), we obtain
—9793.1183 ¢, + 105638.4983 c5 + 2210690 ¢, + 7550000 c5 +

(co+2¢; —cy — 23 + ¢4 + 2¢5)* = 0.0625 (3.64)
by(3.60), we get

Co+ ¢c4—3¢c+5c3—7¢c,+9¢c5=0 (3.65a)
8c; +64c, +200c; +448¢c, +840c¢c5 =4 (3.65Db)
24 ¢, +448 ¢, + 3160 c5 + 12608 ¢, + 36824 c; = 12 (3.65¢)
48c; + 2688c, + 36528c5 + 251520c, + 1137072¢5 = 24  (3.65d)
48 ¢; + 13440 c, — 336 ¢c3 + 1152 ¢, — 2640 ¢ = 24 (3.65€)

from(3.64),(3.65)(a),(b),(c),(d)and(e), we have
co = —0.5000, ¢; =05000, c,=c3=c,=c5=0
Then, the approximate solution is
y(x) = —0.5000 + 0.5000(2x*+ 1)+ 0
= —0.5000 + x* + 0.5000=x*
The following proposition is proved by fractional shifted Chebyshev
polynomials of first, third and fourth kinds as well as in fractional shifted
Chebyshev polynomial of second kind, see[33] .
Proposition(3.3.1):
The operational matrix of fractional derivative a, can be computed as,
D* = FOACFOT'G (x)  where, i=1,3,4 (3.66)
where, @, (x) = {T, (), Vo (x), Wy (x)}

also, A% isa (n + 1)(n + 1) operational matrix of fractional derivative.
— O 0 —_

I(a+1) 0 0 0
F(l) cee O 0
— rQ2a+1)
A%= 0 r(a+1) (3.67)
F(nc;+1)
0 0 r((n-1a+1)

Example (3.3.13):
Consider the following multi-fractional order nonlinear differential
equation,

D3 u(x) + Dg u(x) + u?(x) = xz(g) + % (3.68)
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with mixed conditions,

u(0) =0, ud(@) =2, u®) == (3.69)
To solve the problem with m =3 and a = % the order of fractional
shifted Chebyshev polynomial of first kind with the exact solution
y(x) = x|

By using equatlon(3 66) we get

D7 = FOEz . ™! Ts(x) (3.70)

by substituting N=3 , a = % in equation(3 67)

0 0
I'(a+1) 0

i 0 0
Ao r(1) 3. 323 0 0 0
g [@a+D 0 36. 108 0 0
| FatD) r(na+1> 116.953 0
l 0 0 F((n Da+1)

from(3.23), we have
To(x) =F (1)X5

1 0 0
2x* —1 2 0
8x2(®) —8xx + 1 \ [ 1 8
32x3(@ — 48x2(“)+18x -1 -4

1
-1 2 O O
FO="1 2 0 O (3.71b)
-1 18 —-48 32
1 0 0 0
0.5 0.5 0 0
0.375 0.5 0.125 0

0.313 0.469 0.188 0.031
by substituting(3.71)(a),(b)and(c)in(3.70), we obtain

5 5 -1 _
pz = FPAz - FP T s =

FO™ (3.71c)

0 0 0 0 2 1 ]
6.647 0 0 0 x2 — 372
117.846 144.433 0 0 l 8x2+1 ‘ (3.72)

596.666 1005 467.814 0 )
— 48x° + 18x2 -1

from using the first root of xz =L of the polynomial sz+1 (X)),

substituting this root in(3.68), we get

6.647C; + 393.4912C, — 255.1413C; + (C, — C,)* = 3.5733 (3.73)
by(3.69), we have

u(0)=C—C,+C,—C3=0 (3.74a)

76



uM(1)=5C;+20C, —99C; =
u® (1) = —c1 +130 C; +—-C;
from(3.73), (3 74)(a), (b)and(c) we get
C,=C, =0.5000, C,=C3=0.
Then, the approximate solution is

5
y(x) = 0.5000 + 0.5000 (Zx? - 1) +0=x

Example(3.3.14):
Consider the following multi-fractional order nonlinear differential
equation,

(3.74b)
15

5
2
=2 (3.74¢)

5
2

7 7 3
D*u(x) + Dzu(x) + u® (x) = (xi) + 11.632 (3.75)
with mixed boundary condition ,
u(0) =0, u@M) =1, @) =2 WO =2 (3.76)

To find the approximate solution with m =3 ,a = E the order of
fractional shifted Chebyshev polynomial of third kind with the exact

solution y(x) = xz2.
By using equation(3.66), we have

A =7 -1 —
Dz = F®Az-FO® " V7 (x) (3.77)
2
. . 7 .
from substituting N=4 , a = 5 N equation(3.67)
- O O -
0 0 0
”F“(;“ 0 0 0 0 [o 0 0 0 0]
7 — |11 632 0 0 0|
R=| 0 T 0 0 0 0 433 298 0 0 0
) Gt 0 0 [0 0 2361 0 OJ
Fa+l) Tma+l) 0 0 0 7326 0
L 0 0 r((n—Da+1)
(3.783a)
by(3.24), we have
7, (x) = F®X,
2 1 A
1 7
1 0 0 0 0 5
[ 4x" -3 | -3 4 0 0 o || %
16 XD — 20" + 5 = 5 —20 16 o o ||2G)
64x3(“)—112x2(“)+56x“—7 -7 56 —-112 64 0 J 3(%)
256x4(a)_576x3(a)+432x2(a)_120xa+9 9 =120 432 —576 256 x4(Z)
L 2/
0 0 0 0
; [ -3 4 0 0 0 ]
F¥=| 5 —20 16 0 0 | (3.78b)
| =7 56 -112 64 0 |
l 9 —120 432 -576 256
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1 0 0 0 0
. 0.75 0.25 0 0 0
F® =[ 0.625 0.313 0.063 0 0 } (3.78¢)
0.547 0.328 0.109 0.016 0
0.492 0.328 0.141 0.035 0.003906

from substituting(3.78)(a),(b)and(c)in(3.77), we obtain
DT = FOR: - FO .75 (x) =

[ ;
0 0 0 7

0 0
46.527 0 0 0 0 4z -3
4967 x 10° 1733 x 10° 0 0 o 16 2%) — 20 X245
5.869 x 10* 3.509 x 10* 9.444 x 103 0 0| 3Q)
—_ 2
| 3147%105 2372x 105 1201x 105 2931x10% 0 64.x°( 112 x22) +56 x2 -7

(3.79)
by using the first root of xz = % of the polynomial Vz,,,;_,(x),

substituting this root in(3.75), we obtain
46.527 ¢; + 15466.7306 c, + 214166.8205 c; + 1003744.909 ¢, +

(CO - CZ - C3)3 - 120538 (380)
from(3.76), we get

u(0)=cy—3¢c;+5¢c;,—7¢c3+9¢, =0 (3.81a)
uM (1) =14c¢;, +42¢c, +84c3+140 ¢, = % (3.81b)
u®(1) =35¢; +497 ¢, + 2170 ¢3 + 6230 ¢, = = (3.81¢)
u® (1) = 525 ¢; +3097.5 ¢, + 31479 c3 + 599412 ¢, =~ (3.81d)

by(3.80),(3.81)(a),(b),(c)and(d), we obtain

Co = 0.7500,C1 = O.ZSOO,CZ =C3 =Cy = 0.
Then, the approximate solution is

y(x) = 0.7500 + 0.2500 (4 Xz — 3) +0=x2

Example(3.3.15):
Consider the following multi-fractional order nonlinear differential
equation,

DSu(x) + Dru(x) + ut(x) = (x§)4 +52.343 (3.82)
with mixed boundary condition,
u(0) =0, u®W =2, u@W =2, u®1) =22, u®(0) =0

(3.83)

For solving the problem with m =5 ,and a = z the order of fractional

shifted Chgebshev polynomial of fourth kind with the exact solution

y(x) = xz.

From using equation(3.66), we have
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2 ) -1 —
Dz = F®Az- FO " W (x) (3.84)
2
. 9 . .
by substituting N=5 , a = 5 in equation(3.67)
r0 0 0 0 0 0
F(a + 1) 0 0 0 0 0
(1) TQa+1) 0 0 0 0
0 0 F(Z(X + 1) F(4Cl + 1) F(na + 1) 0
0 0 0 rGa+1) T((n-1a+1)
0 0 0 0 0 0
0 0 0 0 0 0
[ 52.343 0 0 0 0 0 ]
_| 0 6.933x10° 0 0 0 0|
| o 0 6364x10* 0 0 0|
| 0 0 0 2.773 x 10° 0 o]
l 0 0 0 0 8374 x10° 0
(3.85a)
from(3.25), we have
We(x) = F(4)X2
2
[ 1 1 [ L]
| 2x7+1 | [ 1 0 0 g 0 0 ]I xz I
| , 83 |_| 30 8 o o o ||©9
| 3233) —16x20) —14x3 4+ 5 | - | 5 -14 —12 32 0 0 I|x3(§)|
| 128 x*3) — 128 x*G) — 32 x26G) 4 485 — 7 | | _; —ﬁo ;gz _;28 _1726% 5012J 246
l512 x56) - 768 *6) +96 %) 4272 x2G) — 110 23 + o sG]
[ 1 0 0 0 0 0]
| 1 2 0 0 0 0 |
FO | =3 0 8 0 0 0 3.85b
5 -14 -16 32 0 0 ( )
-7 48 —32 -—-128 128 0
9 —-110 272 96 —-768 512
[ 1 0 0 0 0 0 ]
| -05 05 0 0 0 0 |
@1 _ | 0375 0 0125 0 0 0 |
F —1-0.188 0.219 0.063 0.031 0 0 (3850)
0.148 0.031 0.094 0.031 7.813x 1073 0 J
—0.066 0113 0063 0041  0.012 1.953 x 1073
by substituting(3.85)(a),(b)and(c)in(3.84), we get
9 9 _
D2 = FWR2 - F®O ™ o (x) =
z 1
0 0 0 0 0 0 2 %3 +1
104.686 0 0 0 0 0 20)
—2.773 x 10* 2.773 x 10* 0 0 0 0 8x"\2) =3
8184 x 105 —5.546 x 10* 2.545 x 10° 0 0 ol 32x%3) —16x26) — 1422 + 5
—9.595x 105  7.652x10°  1.2x10° 1.109 x 10° 0 0 ©) :© 29) 9
1.049 x 108 —3.224x 107 2.765x 107 6.744 x 10° 3.35x 10° 0 128 x72) — 128 x™\2/ — 32 x°\2/ +48x2 =7
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9 9
from using the first root of xz = %of the polynomial Wz, 1_,(x),
substituting this root in equation(3.82), we get
104.686 ¢, + 92977.6787 ¢, + 1990600 c; + 13059000 ¢, +
96280000 cs + (co + 2¢; — ¢, — 2¢3 + ¢4 + 2¢5)* = 52,4055  (3.87)
by(3.83), we have
Co+ ¢, —3¢c,+5¢c3—7¢c4,+9¢cs=0 (3.88a)
9 ¢y + 72y +225 3 + 504 ¢4 + 12465 c5 = - (3.88b)

31.5¢; +576 ¢, +4027.5 ¢c3 + 16020 ¢4 + 505911.5 ¢5 = 67‘3

(3.88¢)

78.75 ¢; + 4032 ¢, + 53484.75 c5; + 364050 ¢, + 6713808.75 csz%
(3.880d)

24192 c, — 48384 ¢35 + 9303552 ¢, — 55579392 ¢5; =0 (3.88e)

from(3.87),(3.88)(a),(b),(c),(d),(e), we get

co = —0.5000 ,c; =0.5000 ,c;, =c3=c,=¢c5=0.

Then, the approximate solution is

9
y(x) = —=0.5000 + 0.5000 (2 X2 + 1) +0

9 9
= —0.5000 + xz + 0.5000=x2

3.4 The Couple Fractional Order for Shifted Chebyshev polynomials:
In this section the multi-fractional order nonlinear differential equation
has been solved with two different fractional order shifted Chebyshev
polynomials such that one of then make as axillary fractional order two
other and the following examples give the complete idea of the
approximation.
Example(3.3.16):
Consider the following multi-fractional order nonlinear differential
equation,

7 5 1
D*u(x) + Dzu(x) + Dzu(x) + u® (x) = 6.7720 x2 + x° (3.89)
with mixed boundary condition,
u@ =0, uPD=3,uPD) =6, u®PD) =6 (3.90)

To solve the approximate solution withm = 4,and a; = 3 ,a, = 2 the
couple order for shifted Chebyshev polynomial of first kind such that the
exact solution is y(x) = x3 .
By using equation(3.30) and lemma(3.3.3) and equation(3.42), we get

7 7
Dz = FMW Az-(G.T;(x) (3.91)
also, from(3.23), we have
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«(x) = (1)X3
1 1 0 0 0 0 1
|[ 2x° -1 ]I |1 2 o 0 0 ”x3]
I 8x6—8x3+1 =] 1 -8 8 0 0 |[xt]
| 32x°—48x°+18x3 — 1 | |—1 18 —48 32 0 “ng
1128 x12 — 256 x9 + 160 x6 — 32 3 + 1 1 —-32 160 —256 128 1lx12
1 0 0 0 0
| -1 2 0 0 0 |
FO = | 1 -8 8 0 0 | (3.92a)
l -1 18 -—48 32 J
1 -32 160 -256 12 8
from(3.30). we get
[ 0 0 0 0 0 1
| 0 0 0 0 0 |
=11.344 0724 0.028 —0.014 0.0052 | (3.92b)
|l1 034 0705 0.192  0.0016 —0.0013 JI
0.869 0.659 0.272  0.048 —0.00013
by(3.29b), N=4 , k=1, @« = 3 and /1—— we have
0 0 0 0 0
00 0 0 0
I((k+1)a+1
Z§= 00 r(((k+1)a+1—),1) 0 0
I((k+2)a+1) 0
0 0 0 M((k+2)a+1-2)
00 0 0 F(Na+1)
L I'(Na+1-2)
00 0 0 0
[0 0 0 0 0 ]
| 0 0 216.649 0 0 | (3.92¢)
00 0 1261
Lo o 0 4015J
from substltutmg(3 92)(a),(b)and(c)in(3.91), we get
D7 = FW A3 G.Tz(x) =
0 0 0 0 0 1
0 0 0 0 0 2x3—-1
2329 1255 48.529 —24.265 9.17 8x6—-8x3+1
27750 20920 7456 210.636 —-107.52 32x°—48x°+18x3 -1
159400 136200 78780 23660 535.501 128 x12 — 256 x° + 160 x6 —32x3 + 1
(3.93)
5 5
Dz = FW Az - G.T,(x) (3.94)
by(3.31), we have
0 0 0 0 0
0 0 0 0 0
G =|1.383 0.721 0.0088 —0.01 0.0047 (3.95a)
1.052 0.708 0.182 —0.0017 —0.00077
0.88 0.663 0.268  0.044 —0.00073

from(3.29b), N=4 , k=1, @ = 2 and A ==, we have
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0 0 0 0 0
0 0 0 0 0
r((k+Da+1)
E%— 0 I((k+1a+1-21) 0
- r((k+2)a+1) 0
0 0 0 I((k+2)a+1-2)
0 0 0 0 I(Na+1)
L I'(Na+1-21)
[0 0 0 0 0 1
|0 0 0 0 0 |
=lo 0 18054 0 o | (3.95b)
[0 0 0 619 J
00 0 0 140 056!
by substituting(3.92a),(3.95)(a)and(b)in(3.94), we get
2[ O 0 0 0 0 1 31
| 199. 749 104.1395 1.%8 —1.44?4 0.279 |[ 8x(’2f8;31+1 l
| 885305  777.594 352.827 5.176 -5.602 || 32x°—48x5 +18x3 — 1 |
[ 3.1x 105 2.749 X 10 1.946 x 10* 787.83 12.623 J l128 x1?2 —256x%+ 160 x® — 32 x3 + 1J
(3.96)
from using the first root of x*! = — of the polynomial T4%, _;(x),
substituting this root in equation(3.89), we obtain
4304.4446 c, + 14909.0146 c; + 104608.456 c, +
(co — ¢ + ¢4)3=6.1593 (3.97)
by(3.90) , we have
u(0)=cy—c;+c,—c3+c, =0 (3.98a)
uM1)=6c, +24c, +54c3+96¢c, =3 (3.98b)
u@(1)=12¢;, +192¢, + 9723+ 3072¢c, = 6 (3.98¢)
u®(1)=12¢; +912c, + 10476 c3 + 58944 c, = 6 (3.98d)

from(3.97),(3.98)(a),(b)and(c), we get
co = 0.4947 ,c; = 0.4968 ,c, = 0.0016 ,c; = —0.0005 , ¢, = 0.0001 .
Then, the approximate solution is
y(x) = 0.4947 + 0.4968(2 x> — 1) + 0.0016(8 x® — 8 x3 + 1)
—0.0005(32 x° — 48 x°+ 18 x> — 1) + 0.0001(128 x'2
—256x°+160x%—32x3+1
=0.0128 x12 — 0.416 x° + 0.0528x° + 0.9686x3 + 0.0001

Table(3.3)
X Approximate Exact solution
solution
0.1 0.0010 0.001
0.2 0.0078 0.008

82



0.3 0.026 0.027
0.4 0.062 0.064
0.5 0.121 0.125
0.6 0.208 0.216
0.7 0.322 0.343
0.8 0.455 0.512
0.9 0.577 0.729

Example(3.3.17):
Consider the following multi-fractional order nonlinear differential
equation,

D%u(x) + Dzu(x) + Dzu(x) + u®(x) = 27.081 x2 + x*®  (3.99)
with mixed boundary condition,
u(=0,uPMD) =4, u®@Q) =12, u®Q) =24, u®(0) =24

(3.100)

To solve the approximate solution withm =5 ,and a; = 4 ,a, = 3 the
couple order for shifted Chebyshev polynomial of third kind such that the
exact solution (x) = x*.
By using equation(3.31) and lemma(3.3.3) and equation(3.43), we get

D7 = F® f - H.V,(x) (3.101)
also, by(3.24), we get

1 1 0 0 0 0 0 1
4 x*—3 -3 4 0 0 0 0 fx*
16 x®—20 x*+5 }[ 5 -20 16 0 0 0 lxs
64 x'2—112 x8+56 x* -7 -7 56 —-112 64 0 0 x12
256 x'°—576 x'2 +432 x® - 120 x*+9 9 120 432 576 256 0 [|x!®
1024 x2°— 2816 x© + 2816 x'2 — 1232 x® +220 x*—11 —11 220 -—-1232 2816 -—-2816 1024llx
1 0 0 0 0 0 1
‘ -3 0 0 0 0 ‘
®»_| 5 —20 16 0 0 0
F —7 112 64 0 0 (3.102a)
[ 9 —120 432 -576 256 0 J
220 —1232 2816 -—2816 1024
from(3 ,we have
0 0 0 0 0
0 0 0 0 0 0 l
_|—4.152 —6.442 -10.033 -13.999 -18 -22
H=|_4724 —6767 -10126 —-14.008 -18 -22 (3.102b)

—-5.235 -7.096 -10.257 -—-14.035 -18.002 -—-22
-5.7 —=7.421 -10.411 -14.082 -18.01 -—22

by(3.29b), N=5 k=1,a, =4 and 1 = 3 , We get
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0 0 0
00 0 0 0 0
r((k+Da+1) 0 0 0
M((k+Da+1-2) 0 0 0
9 I((k+2)a+1) 0 0
fz= r((k+2)a+1—2)
OO . I((k +3)a +1)
0 0 0 T((k+3)a+1-2)
0 0 I(Na + 1)
| TNa+1-2)]
0 o0 0 0 0 0 1
[0 0 O 0 0 0 |
_|0 0 3466 0 0O 0 |
| 0 0 0 3413 0 0 (3.102c)
Il 0 0 O 0 152900 0 Jl
0 00 O 0 468800 _
from substituting(3.102)(a),(b)and(c)in(3.101), we obtain
9 _9 _
Dz =F® Az-H.V,(x) =
[ 0 0 0 0 0
0 0 0 0 0 0
| —2.303 x 10° —3.572x 10> —5.564 x 10° —7.763 x 10° —9.982 x 10° —1.22 x 10°
5.799 x 10° 1.023 x 10° 1.683 x 10° 2.375 x 10° 3.056 x 10° 3.735 x 10°
—2.018 x 108 —2.741x10% —3.966 x 108 —5.428 x 10° —6.962 x 108 —8.508 x 10°
l —5.099 x 108 —5.447 x 108 —6.36 x 108 —7.919 x 108 —9.908 x 108 —1.206 x 10°
4 x*-3
16 x8—20 x*+5
64 x12—112 x8+56 x*—7
256 x'¢—576 x'2 +432 x®—-120 x*+9
[1024 x%0 — 2816 x'°+ 2816 x? —1232 x8+220 x*— 11J
(3.103)
7 _7 _
Dz = F®) Az- H.V;(x) (3.104)
by(3.32), we have
0 0 0 0 0 0
0 0 0 0 0 0
H=|—4074 -6.403 —10.024 —13.999 -18 =22
—4.656 —6.726 —10.112 —14.005 —18 —22
—-5.174 -7.055 -10.239 —14.031 -—-18.001 —-22
—5.644 -7.381 -10.391 —-14.075 —-18.008 —22
(3.105a)
7
from(3.29b), N=5, k=1, a, =3 and A = > e get
- 0 0 0 0 0 0
0 0 0
0 0 r((k+1)a+1) 0 0 0
r((e+1)a+1-2) 0 0 0
—Z_ r((k+2)a+1)
A= 0 0 0 r((k+2)a+1-2) 0 0
0 0 0 0 ((k+3)a+1)
0 0 0 r((k+3)a+1-1)
0 0 I(Na+1)
I(Na+1-2)
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0 0 O 0 0 0
[0 0 O 0 0 0 ]
10 0 216.649 O 0 0
{0 0 o0 1261 O 0 (3.105b)
0 0 O 0 015 0
0 0 O 0 0 9556

by substituting(3.102a),(3.105)(a)and(b)in(3.104), we obtain
D7 = F(3).E§ ‘H.V3(x) =
0

0 0 0 0
[ 0 0 0 0 0
| —-1. 4-12 x 10* —2.22x10* —3.475 x 10* —4.853 x 10* —6.239 x 10* —7.626 x 10*
—2.769 x 10° —3.874 x 10° —5.728 x 10° —7.906 x 10° —1.016 x 10° —1.242 x 10°
| —2.318 x 10° —2.965 x 106 —4.118 x 10° —5.559 x 10° —7.113 x 10° —8.692 x 10°
|-—1.218 x 107 —1.463 x 107 1—1.915 x 107 —2.509 x 107 —3.18 x 107 —3.879 x 107
I 4 x* -3 |

I 16 x8—20 x*+5 I
I 64 x12—112 x® +56 x* —7 |
| 256 x16 — 576 x1% +432 x® — 120 x* +9 |
11024 x20 — 2816 26 + 2816 x12 — 1232 x° + 220 x* — 11

(3.106)
from using the first root of x*! = — of the polynomial V.21, . (x),

substituting this root in equation(3.99), we obtain
—37936.2532 ¢, + 3181500¢c3 — 84271000¢,—160580000cs +

(co— ¢y —C3 +c5)* = 26.4464 (3.107)
by(3.100), we have
co—3¢c;+5¢c,—7¢c3+9¢c,—11¢c5=0 (3.108a)
16 c; +48¢c, +96 c3 +160c, + 240 c5 = 4 (3.108b)
48 c; + 656 c, + 2848 ¢3 + 8160 c, + 18640c5 = 12 (3.108c)
96 ¢, + 4896 ¢, + 48192 ¢; + 242112 ¢, — 2505112 ¢ = 24
(3.108d)
96 c; —480c, + 1344 c; — 2880 ¢, + 5280 cs = 24 (3.108e)

from(3.107),(3.108)(a),(b),(c),(d)and(e), we obtain
co = 0.7500 ,¢; = 0.2500 ,c, =c3=¢c5=0.
Then, the approximate solution is
y(x) = 0.7500 + 0.2500(4 x* —3) + 0
= 0.7500 + x* —0.7500=x"*

Example(3.3.18):

Consider the following multi-fractional order nonlinear differential
equation,

5 3 1
D3u(x) + Dzu(x) + Dzu(x) + u®(x) = 2.257 xz + x* (3.109)
with mixed boundary condition,
u(=0,uPD) =2, u®PA)=2 (3.110)
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To find the approximate solution withm =3 ,and a; =2 ,a, = 1 the
couple order for shifted Chebyshev polynomial of fourth kind such that
the exact solution is (x) = x?2.

By using equation(3.32) and lemma(3.3.3)and equation(3.44), we have

5 _5
Dz = F® Az R.w,(x) (3.111)
also, from(3.25), we have

W, (x) = F(4)X2

1 1 0 0 01f1
2x%1 41 11 2 0 0ffx
g x2al _3 -3 o0 8 0ffx
32 x3%1 — 16 x201 — 14 x%1 4 5 5 —14 -16 327lx
1 0 0 0
@w_| 1 2 0 0
FO=| 120 0 (3.112a)
5 —14 —16 32
by(3.32), we get
-0 0 0 0
_| o 0 0 0
R=1_0318 —0607 —026 —0078 (3.112b)
|—0.145 —0.318 —0.041  0.037 ;
from(3.29b), N=3 , k=1, ¢y = 2and A = S we have
0 0 0 0
A [V 0 ] 00 0 0
vl I((k+1)a+1) [0 0 O 0
A=10 0 T(hrvariog O 15lo 0 18.054 o (3.112¢)
00 FNa+1) J 00 0 61.9
| I'(Na+1-4)
by substituting(3.112)(a),(b)and(c)in(3.111), we get
5 5
Dz = F®W Az R.w,(x) =
0 0 0 0 1
0 0 0 0 2x24+1
—45923 —200.39 —396.606 —615.233 8% _3
—194.426 —973.324 —2.085 x 103 —3.406%x 1031132 x6 — 16 x* —14x2 +5
(3.113)
3 _3
Dz = F® Az R.wy(x) (3.114)
from(3.32), we get
0 0 0 0
_ 0 0 0 0
H=1_0424 —0764 0497 —0.263] (3.115a)
—0.17 —0364 —0.0080 0.039

3
by(3.29b), N=3 , k=1, a, =1and A = S we have
0 0 0 0
; [0 0 0 0 l 0 0 0 0
~_ T((k+1Da+1) -0 O 0 0
Az_|0 0 T((k+1D)a+1-2) 0 |_ 0 0 2.257 0
[(Na+1) 0 0 0 4514
lO 0 0 I['(Na+1-14)
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(3.115b)
from substituting(3.112)(a),(3.115)(a)and(b) in(3.114), we get

3 _3
Dz = F® Az R.wy(x) =
0 0
0 0 2 x? + 1
~7.662 —32.182 —62. 394 —95, 524“ 8 x* —
—9.195 —-51.229 -114.571 —191.606][32 x6 — 16 x* —14x +5

(3.116)
by using the first root of x*! = — of the polynomial W2, . (x),
substituting this root in equation(3.110), we have

—2301.908¢, — 11309.005 ¢35 + (cy — ¢, + 4 ¢3)? = 2.1477  (3.117)
from(3.110), we get

u(0)=cy+c;—3c; +5¢c3=0 (3.118a)
uW(1)=4¢ +32¢c,+100c; =2 (3.118b)
u@ (1) =4c, +96c, +740c3 =2 (3.118c¢)

by(3.117),(3.118)(a),(b)and(c), we obtain
co = —0.5145 ,¢; = 0.5089 ,c, = —0.0016 ,c; = 0.0002 .
Then, the approximate solution is
y(x) = —0.5145 + 0.5089(2 x? + 1) — 0.0016(8 x* — 3)
+ 0.0002(32x% — 16 x* — 14 x% + 5)
= 0.0002 + 0.0064 x° + 0.0096 x* + 1.015 x?

Table (3.4)

X Approximate solution Exact solution
0.1 0.01 0.01
0.2 0.041 0.04
0.3 0.092 0.09
0.4 0.163 0.16
0.5 0.255 0.25
0.6 0.367 0.36
0.7 0.501 0.49
0.8 0.655 0.64
0.9 0.832 0.81
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Conclusions

1.  The operational matrices of fractional derivative for higher
fractional order with different values are obtain in multi-order
differential nonlinear equations which are given to support the best
numerical solution and sometime exact solution for the considered

example.

2. The fractional operational matrices of fractional derivative of some
types of fractional chebyshev polynomial depending on value of
the orders have been given to support the mixed boundary values
multi-fractional nonlinear order to obtain the best numerical or

exact solution some time.

3. The difficulty of driven the all types of matrices treated in details
without any mistake in analytically and computationally in

proving.

4. The relation between the types of operational matrices of wavelets
chebyshev polynomials for fractional derivative has been presented

for first time with new formulation of wavelets chebyshev types.
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Future Work

1. Solving multi-order differential equations by using fractional lager
polynomials may be taken.
2. Solving fractional diffusion equation by using fractional

polynomials such as Legendre , Lager and Chebyshev ,....

3. Coupled fractional polynomials for solving fractional partial

differential equations.

4. All above points (1),(2),(3) which are important to drive the
operational matrices to simplify the processing of solving any class

of nonlinear differential problems.
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